
–
seats

Seats
Siz	 düzbucaqlı	 bir	 zalda	 beynəlxalq	 proqramlaşdırma	 yarışı	 təşkil	 edirsiniz.	 Zalda	
sıra	 və	 	 sütunda	 düzülmüş	 	 sayda	 oturacaq	 var.	 Sətirlər	 -dan	 -dək,
sütunlar	 isə	 -dan	 -dək	 nömrələnmişdir.	 	 sətrində	 və	 	 sütununda	 yerləşən
oturacaq	 	kimi	işarələnmişdir.	Dəvət	olunmuş	 	contestants,	numbered	from	
through	 .	 You	 also	 made	 a	 seating	 chart,	 which	 assigns	 the	 contestant	 	 (

)	to	the	seat	 .	The	chart	assigns	exactly	one	contestant	to	each
seat.

A	set	of	seats	in	the	hall	 	is	said	to	be	rectangular	if	there	are	integers	 ,	 ,	 ,	and	
	satisfying	the	following	conditions:

.
.

	is	exactly	the	set	of	all	seats	 	such	that	 	and	 .

A	 rectangular	 set	consisting	of	 	 seats	 ()	 is	beautiful	 if	 the	contestants
whose	assigned	seats	are	in	the	set	have	numbers	from	 	through	 .	The	beauty	of
a	seating	chart	is	the	number	of	beautiful	rectangular	sets	of	seats	in	the	chart.

After	 preparing	 your	 seating	 chart,	 you	 receive	 several	 requests	 to	 swap	 two	 seats
assigned	to	two	contestants.	More	precisely,	there	are	 	such	requests	numbered	from
	through	 	 in	chronological	order.	The	request	 	()	 is	 to	swap	 the
seats	 assigned	 to	 contestants	 	 and	 .	 You	 accept	 each	 request	 immediately	 and
update	the	chart.	After	each	update,	your	goal	is	to	compute	the	beauty	of	the	current
seating	chart.

Implementation	details

You	should	implement	the	following	procedure	and	function:

give_initial_chart(int	H,	int	W,	int[]	R,	int[]	C)

H ,	 W :	the	number	of	rows	and	the	number	of	columns.
R ,	 C :	arrays	of	length	 	representing	the	initial	seating	chart.
This	procedure	is	called	exactly	once,	and	before	any	call	to	 swap_seats .

int	swap_seats(int	a,	int	b)

Seats (1 of 3)

This	function	describes	a	request	to	swap	two	seats.
a ,	 b :	contestants	whose	seats	are	to	be	swapped.
This	function	is	called	 	times.
This	function	should	return	the	beauty	of	the	seating	chart	after	the	swap.

Example

Let	 ,	 ,	 ,	 ,	and	 .

The	grader	first	calls	 give_initial_chart(2,	3,	[0,	1,	1,	0,	0,	1],	[0,	0,	1,
1,	2,	2]) .

At	first,	the	seating	chart	is	as	follows.

Let's	say	the	grader	calls	 swap_seats(0,	5) .	After	the	request	 ,	the	seating	chart	is
as	follows.

The	sets	of	seats	corresponding	to	the	contestants	 ,	 ,	and	 	are
rectangular	and	beautiful.	Thus,	the	beauty	of	this	seating	chart	is	 ,	and	 swap_seats
should	return	 .

Let's	 say	 the	 grader	 calls	 swap_seats(0,	5) 	 again.	 After	 the	 request	 ,	 the	 seating
chart	goes	back	to	the	initial	state.	The	sets	of	seats	corresponding	to	the	contestants	

,	 ,	 ,	 and	 	 are	 rectangular	 and	 beautiful.	 Hence,	 the
beauty	of	this	seating	chart	is	 ,	and	 swap_seats 	should	return	 .

The	 files	 sample-01-in.txt 	 and	 sample-01-out.txt 	 in	 the	 zipped	 attachment
package	correspond	to	this	example.	Other	sample	inputs/outputs	are	also	available	in
the	package.

Seats (2 of 3)

Constraints

	()
	()

	()

	for	any	call	to	 swap_seats
	for	any	call	to	 swap_seats

	for	any	call	to	 swap_seats

Subtasks

1.	 (5	points)	 ,	
2.	 (6	points)	 ,	
3.	 (20	points)	 ,	 ,	
4.	 (6	points)	 ,	 	for	any	call	to	 swap_seats
5.	 (33	points)	
6.	 (30	points)	No	additional	constraints

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

line	 :	 	 	
line	 	():	 	
line	 	():	 	

Here,	 	and	 	are	parameters	for	the	call	to	 swap_seats 	for	the	request	 .

The	sample	grader	prints	your	answers	in	the	following	format:

line	 	()	:	the	return	value	of	 swap_seats 	for	the	request	

Seats (3 of 3)

