الدمية الميكانيكية

الدمية الميكانيكية هي لعبة تقوم بتكرار سلسلة معينة من الحركات بشكل اوتوماتيكي، وفي اليابان تم تصنيع العديد من الدمى الالكترونية منذ العصور القديمة

حركات الدمية الميكانيكية يتم التحم بها عن طريق دارة والتي تتألف من أجهزة. الجهاز يتصل بمجموعة من الأنابيب.
 عدد اعتباطي من المداخل. كل انبوب يصل بين مخرج لجهاز ومدخل لجهاز آخر ممكن أن يكون نفس النوع أو غير نوع. انبوب واحد تماماً موصول إلى كل مدخل وواحد تماماً موصول إلى كل مخرج.

لتوصيف كيفية قيام الدمية بالحركات، لنفرض أن كرة موضوعة في أحد الأجهزة. تتنقل االكرة عبر الدارة. في كل خطوة من التنقل، تغادر الكرة جهازاً من خلال أحد مخارجه، وتنتقل عبر الأنبوب المرتبط بهذا المخرج وتدخل إلى الجهاز في النهاية الأخرى للأنبوب. تستمر الكرة بالانتقال إلى اللانهاية.

يوجد ثلاث أنواع من الأجهزة: الأصل، القادح والمفتاح. يوجد واحد تماماً من نوع الأصل كما يوجد M قادح ويوجد مفتاح (يمكن ل S أن تكون صفر). يجب عليك حساب قيمة S. كل جهاز له رقم تسلسلي فريد. الأصل هو الجهاز الذي تكون فيه الكرة في البداية، له فقط مخرج واحد ورقمه التسلسلي هو 0.

القادح يسبب قيام الدمية بأحد أنواع الحركات، كلما دخلت كرة إليه. لكل قادح مخرج واحد فقط. الرقم التسلسلي للقوادح هو من 1 وحتى

كل مفتاح له مخرجان، يدعيان 'X' و 'Y'. حالة المفتاح هي إما 'X' أو 'y'. بعد أن تدخل الكرة إلى المفتاح تغادره من خلال المخرج المحدد بالحالة الحالية للمفتاح. بعد ذلك يقوم المفتاح بتغيير حالته الحالية إلى الحالة المالة المعاكسة. في البداية تكون حالة كل المفاتيح هي 'X'. الأرقام التسلسلية للمفاتيح تكون من 1- وحتى S-

سيتم إعطاؤك عدد القوادح M، كما سيتم إعطاؤك سلسلة A طولها N. كل من عناصرها هو رقم تسلسلي لأحد القوادح. يمكن لكل قادح أن يظهر عدة مرات (وربما ولا مرة) ضمن A. مهمتك هي إنشاء دارة تحقق الشروط التالية:

- يجب على الكرة أن تعود إلى الأصل بعد عدد ما من الخطوات.
 - تعود الكرة إلى الأصل بعد أن تدخل إلى القوادح تماماً N مرة والأرقام التسلسلية المتتالية للقوادح التي تم الدخول إليها يجب أن يكون - ليكن P العدد الكلي لتغير حالات المفاتيح التي سببها عبور الكرات خلالها قبل أن تعود الكرة أول مرة إلى الأصل، يجب ‘لى قيمة P أن لا تتجاوز 00000020. بنفس الوقت أنت لا تريد أن تستخدم الكثير من المفاتيح.

تفاصيل البرمحة

يجب عليك برمجة الإجراء التالي

```
create_circuit(int M, int[] A)
```

• •
• A: مصفوفة طولها N، تعطي الأرقام التسلسلية المتتالية للقوادح التي يجب على الكرة أن تدخلها..
• يتم استدعاء هذا الإجراء مرة واحدة تماماً.
• لاحظ أن قيمة N هي طول المصفوفة A، ويمكن الحصول عليها كما هو موضح في ملاحظات البرمجة.
يجب على برنامجك أن يستدعي الإجراء التالي لإعطاء الجواب

```
answer(int[] C, int[] X, int[] Y)
```


) - مصفوفتان من نفس الطول ، طول هاتين المصفوفتين S هو عدد المفاتيح، من أجل المفتاح :X, Y • Y[j - خاصته متصل بالجهاز 'Y' ومخرج X[j - 1] خاصته متصل مع الجهاز 'X'

- كل عنصر من Cو Xو Y يجب أن يكون عددين صحيحاً بين S - و M, متصمنهما. -
- يجب استدعاء هذا الإجراء مرة واحدة تماماًاً.
- الدارة الممثلة بـ Cو X Y يجب أن تتوافق مع الشروط المحددة بنص المسألة.

إذا تم مخالفة أحد الشروط السابقة ستكون نتيجة تقييم برنامج هي Wrong Answer. وإلا، ستكون نتيجة تقييم

برنامج هي Accepted وسيتم تحديد علامتك بناءً على قيمة S (انظر المسائل الجزئية).
create_circuit(4, [1, 2, 1, سيقوم المقيم بطلب $A=[1,2,1,3]$ g $\quad N=4, M=4$ لتكن 3])

answer([1, -1, -2, 0, 2], [2, الشكل أعلاه يعرض دارة، والتي يمكن تمثيلها من خلال الاستدعاء

تم استخدام مفتاحين ، وهكذا $2=2$
في البداية تكون حالة المفتاح 1- و 2- كلاهما 'X'.
تنتقل الكرة كما يلي:

$$
0 \longrightarrow 1 \longrightarrow-1 \xrightarrow{\mathrm{x}} 2 \longrightarrow-2 \xrightarrow{\mathrm{x}}-2 \xrightarrow{\mathrm{Y}} 1 \longrightarrow-1 \xrightarrow{\mathrm{Y}} 3 \longrightarrow 0
$$

- عندما تدخل الكرة أول مرة إلى المفتاح 1-، تكون حالته هي 'X'. وهكذا تنتقل الكرة نحو القادح 2. بعدها تتغير حالة المفتاح 1- إلى 'Y'
- عندما تدخل الكرة إلى المفتاح 1- المرة ثانية، تكون حالته هي 'Y'. وهكذا تنتقل الكرة إلى القادح 3. بعدها تتغير حالة المفتاح 1- إلى 'X'.

عندما تعود الكرة إلى الأصل، تكون قد عبرت عبر القوادح 1, 3 (1, 2, 1 كما أن حالة المفتاحين 1- و 2- هي في كلاهما (${ }^{\text {P هي } 4 . ~ ل ذ ل ك ~ ه ذ ه ~ ا ل د ا ر ة ~ ت ت و ا ف ق ~ م ع ~ ا ل ش ر و ط . ~ ' X ' ~}$

الملف sample-01-in.txt في الحزمة المرفقة المضغوطة يتوافق مع هذا المثال. كما أن هناك أمثلة أخرى على الدخل ضمن الحزمة.

$$
\begin{array}{r}
1 \leq M \leq 100000 \\
1 \leq N \leq 200000 \\
(0 \leq k \leq N-1) 1 \leq A_{k} \leq M
\end{array}
$$

المسائل الجزئية

العلامة والقيود لكل حالة اختبار هي كالتالي:

1. (2 نقطتان) من أجل i ($1 \leq i \leq M$), العدد $i \leq$ يظهر مرة واحدة على الأكثر في السلسة

$$
. A_{0}, A_{1}, \ldots, A_{N-1}
$$

$$
\text { 4 = } 16 \text { (10 نقاط) }
$$

$$
\text { M=1 } 1 \text { (18 نقاط) }
$$

6. (56 نقاط) لا يوجد قيود إضافية

من أجل كل حالة اختبار اذا تم تقييم برنامجك بأنه Accepted سيتم حساب نتيجتك بحسب قيمة S:
إذا كان 5 S 5 S $=$ تنال العلامة الكاملة على حالة الاختبار.

- من أجل كل حالة اختبار في المسألتين الجزئيتين 5 و 6, إذا كان N • N, تحصل على

علامة جزئية، العلامة على حالة الاختبار هي
للمسألة الجزئية.

- غير ذلك ستكون علامتك صفر 0.

لاحظ ان علامتك في كل مسألة جزئية هي أصغر علامة من بين علامات حالات الاختبار في هذه المسألة الجزئية.

مقيم الاختبار

.The sample grader reads the input from the standard input in the following format

$$
\begin{array}{r}
N M: 1 \text { line } \bullet \\
A_{N-1} \ldots A_{1} A_{0}: 2 \text { line } \bullet
\end{array}
$$

.The sample grader produces three outputs
First, the sample grader outputs your answer to a file named out.txt in the following .format
$S: 1$ line •
line $2+i(0 \leq i \leq M)$: $\mathrm{C}[\mathrm{i}]$ •
line $2+M+j(1 \leq j \leq S): \mathrm{X}[\mathrm{j}-1] \mathrm{Y}[\mathrm{j}-1] \bullet$

Second, the sample grader simulates the moves of the ball. It outputs the serial numbers of .the devices the ball entered in order to a file named log.txt
.Third, the sample grader prints the evaluation of your answer to the standard output If your program is judged as Accepted, the sample grader prints S and P in the • following format Accepted: S P

If your program is judged as Wrong Answer, it prints Wrong Answer: MSG. The • :meaning of MSG is as follows
.answered not exactly once: The procedure answer is called not exactly once \circ wrong array length: The length of C is not $M+1$, or the lengths of X and Y are \circ different
.400000 over 400000 switches: S is larger than o wrong serial number: There is an element of C, X, or Y which is smaller than $-S$ 。 . M or larger than over 20000000 inversions: The ball doesn't return to the origin within o .20000000 state changes of the switches state ' Y ': There is a switch whose state is ' Y ' when the ball first returns to the \circ .origin wrong motion: The triggers which cause motions are different from the sequence \circ . A

Note that the sample grader might not create out.txt and/or log.txt when your program .is judged as Wrong Answer

