International Olympiad in Informatics 2018
September 2-7th, 2018
Tsukuba, Japan

رسوم الطرق السريعة

في اليابان, المدن متصلة ببعضها عبر شبكة من الطرق السريعة. هذه الشبكة تتألف من N مدينة و M طريق سريع.

 يمكنك الانتقال من أي مدينة إلى أي مدينة عبر الطرق السريعة.

يتم فرض رسوم لأجل القيادة على الطريق السريع. رسم الطريق السريع يعتمد على حالة حركة المرور على الطريق السريع. حركة المرور هي إما خفيفة or مزدحمة. عندما تكون حركة المرور خفيفة, يكون الرسم هو A A ين (العملة اليابانية). عندما تكون حركة المرور مزدحمة, الرسم هو B ين. من المضمون أن B B ع A. لاحظ انك تعلم قيم A و

انت لديك آلة اذا اعطيتها حالات حركات المرور على جميع الطرق السريعة, ستقوم بحساب اصغر مجموع كلي للرسوم

ولكن، الآلة ما تزال في النموذج الاولي. قيم S و T هي مثبتة (أي موجودة ضمن الآلة) وهي غير معروفة من قبلك. انت تريد تحديد قيم S و T. لتقوم بذلك, انت تخطط لتحديد التح بعض التي تخرجها الآلة لكي تستنتج قيم S and 5 T بما أن تحديد حالات حركة المرور هو أمر مكلف, أنت لا تريد استخدام هذه الألة الكثير من المرات.

تفاصيل البرمجة

يجب عليك القيام ببرمجة الاجراء التالي:
find_pair(int N, int[] U, int[] V, int A, int B)

$$
\begin{aligned}
& \text { • • • عدد المدن. }
\end{aligned}
$$

> A •
> • • • رسوم الطريق السريع عندما تكون الحركة المرورية المارية مزدحمة.

> • لاحظ ان M هو طول المصفوفتين, ويمكن الحصول عليه كما هو مذكور في ملاحظة البرمجة.
> الاجراء find_pair يمكنه استدعاء التابع:
int64 ask(int[] w)

- طول w يجب أن يكون M. المصفوفة w تشرح حالات الحركة المرورية.

ان تكون 0 أو 1.

هـ w [i] = 1 o

- هذا التابع يمكن استدعاؤه كحد اقصى 100 مرة (من أجل كل حالة اختبار).
find_pair

```
answer(int s, int t)
```

- •
- هذا الاجراء يجب ان يتم استدعاؤه مرة واحدة.

اذا لم يتحقق احد الشروط اعلاه سيتم الحكم على البرنامج كـ Wrong Answer. وإلا سيتم الحكم على البرنامج كـ Accepted

مثال

المقيم يستدعي find_pair(4, [0, 0, 0, 1], [1, 2, 3, 2], 1, 3)

في الشكل اعلاه، الوصلة رقم i تمثل الطريق السريع رقم i. بعض الاستدعائات الممكنة ل_ ask والقيم المعادة الموافقة كالتالي:

Call	Return
$\operatorname{ask}([0,0,0,0])$	2
$\operatorname{ask}([0,1,1,0])$	4
$\operatorname{ask}([1,0,1,0])$	5
$\operatorname{ask}([1,1,1,1])$	6

بالنسبة لاستدعاء التابع ask([0, 0, 0, 0 [
 التابع يعيد 2.
 The file sample-01-in.txt in the zipped attachment package corresponds to this example. .Other sample inputs are also available in the package

القيود

$$
\begin{array}{r}
2 \leq N \leq 90000 \bullet \\
1 \leq M \leq 130000 \bullet \\
1 \leq A<B \leq 1000000000 \\
\bullet \\
0 \leq i \leq M-10 \\
0 \leq U[i] \leq N-1 \circ \\
0 \leq V[i] \leq N-1 \circ \\
U[i] \neq V[i]
\end{array} \circ,
$$

في هذه المسألة, المقيم هو غير متكيف. هذا يعني أن S و T هما ثابتين عند بداية تنفيذ المقيم ولا يعتمدان على الاسئلة التي سُئلت من قبل حلك.

المسائل الجزئية

$$
\begin{aligned}
& \text { 1 } \\
& \text { 2 }
\end{aligned}
$$

$$
\begin{aligned}
& M=N-1 \text { - } 1 \text { (33) } 4 \\
& B=2 \text { و } A=1 \text { (18) } 1 \text { (33 نقطة) } 5 \\
& \text { 6. (31 نقطة) لايوجد قيود اضافية }
\end{aligned}
$$

لنفترض ان برنامجك تم تحكيمه ك_ Accepted, ويقوم ب_X استدعاء ل_ ask. عندها نقاطك P من اجل كل حالة اختبار (بحسب رقم المسألة الجزئية) يتم حسابه كالتالي:

$$
\begin{aligned}
& \text { • المسألة الجزئية } 1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { • }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • المسألة الجزئية } 6 .
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } P=21 \text { اذا كان } 51 \leq X \leq 52 \text { يكون } 51 \text { o } \\
& \text {. } P=0,53 \leq X \text { If } \circ
\end{aligned}
$$

لاحظ أن نقاطك لأجل كل مسالة جزئية هي اقل نقاط من اجل كل حالة اختبار في هذه المسألة الجزئية

مقيم الاختبار

:The sample grader reads the input in the following format
$T S B A M N: 1$ line \bullet
$V[i] U[i]:(0 \leq i \leq M-1) 2+i$ line \bullet

If your program is judged as Accepted, the sample grader prints Accepted: q, with q the .number of calls to ask

If your program is judged as Wrong Answer, it prints Wrong Answer: MSG, where MSG is one :of
.answered not exactly once: The procedure answer was not called exactly once •
w is invalid: The length of w given to ask is not M or $w[i]$ is neither 0 nor 1 for • . $0 \leq i \leq M-1) i$ some
.more than 100 calls to ask: The function ask is called more than 100 times • . $\{s, t\}$ is wrong: The procedure answer is called with an incorrect pair s and $t \bullet$

