
Stations	(stations)
Singapore's	Internet	Backbone	(SIB)	consists	of	 	stations,	which	are	assigned	 indices	 from	 	to	

.	There	are	also	 	bidirectional	links,	numbered	from	 	to	 .	Each	link	connects	two
distinct	stations.	Two	stations	connected	with	a	single	link	are	called	neighbours.

A	path	from	station	 	to	station	 	is	a	sequence	of	distinct	stations	 ,	such	that	 ,	
,	and	every	two	consecutive	stations	in	the	path	are	neighbours.	There	is	exactly	one	path

from	any	station	 	to	any	other	station	 .

Any	station	 	can	create	a	packet	(a	piece	of	data)	and	send	it	to	any	other	station	 ,	which	is	called
the	 packet's	 target.	 This	 packet	 must	 be	 routed	 along	 the	 unique	 path	 from	 	 to	 	 as	 follows.
Consider	a	station	 	that	currently	holds	a	packet,	whose	target	station	is	 	().	In	this	situation
station	 :

1.	 executes	a	routing	procedure	that	determines	the	neighbour	of	 	which	is	on	the	unique	path
from	 	to	 ,	and

2.	 forwards	the	packet	to	this	neighbour.

However,	stations	have	limited	memory	and	do	not	store	the	entire	list	of	the	links	in	SIB	to	use	it	in
the	routing	procedure.

Your	task	is	to	implement	a	routing	scheme	for	SIB,	which	consists	of	two	procedures.

The	first	procedure	is	given	 ,	the	list	of	the	links	in	the	SIB	and	an	integer	 	as	the
inputs.	It	assigns	each	station	a	unique	integer	label	between	 	and	 ,	inclusive.

The	second	procedure	 is	 the	routing	procedure,	which	 is	deployed	 to	all	stations	after	 labels
are	assigned.	It	is	given	only	the	following	inputs:

,	the	label	of	the	station	that	currently	holds	a	packet,
,	the	label	of	the	packet's	target	station	(),
,	the	list	of	the	labels	of	all	neighbours	of	 .

It	should	return	the	label	of	the	neighbour	of	 	that	the	packet	should	be	forwarded	to.

In	one	subtask,	the	score	of	your	solution	depends	on	the	value	of	the	maximum	label	assigned	to
any	station	(in	general,	smaller	is	better).

Implementation	details

You	should	implement	the	following	procedures:

Stations (1 of 5)

int[]	label(int	n,	int	k,	int[]	u,	int[]	v)

:	number	of	stations	in	the	SIB.
:	maximum	label	that	can	be	used.
	and	 :	arrays	of	size	 	describing	the	links.	For	each	 	(),	link	 	connects
stations	with	indices	 	and	 .
This	procedure	should	return	a	single	array	 	of	size	 .	For	each	 	()	 	is	the
label	assigned	to	station	with	index	 .	All	elements	of	array	 	must	be	unique	and	between	
and	 ,	inclusive.

int	find_next_station(int	s,	int	t,	int[]	c)

:	label	of	the	station	holding	a	packet.
:	label	of	the	packet's	target	station.
:	an	array	giving	the	list	of	the	labels	of	all	neighbours	of	 .	The	array	 	is	sorted	in	ascending
order.
This	procedure	should	return	the	label	of	a	neighbour	of	 	that	the	packet	should	be	forwarded
to.

Each	test	case	involves	one	or	more	independent	scenarios	(i.e.,	different	SIB	descriptions).	For	a
test	case	involving	 	scenarios,	a	program	that	calls	the	above	procedures	is	run	exactly	two	times,
as	follows.

During	the	first	run	of	the	program:

label	procedure	is	called	 	times,
the	returned	labels	are	stored	by	the	grading	system,	and
find_next_station	is	not	called.

During	the	second	run	of	the	program:

find_next_station	 may	 be	 called	 multiple	 times.	 In	 each	 call,	 an	 arbitrary	 scenario	 is
chosen,	and	the	 labels	returned	by	the	call	 to	label	procedure	 in	that	scenario	are	used	as
the	inputs	to	find_next_station.
label	is	not	called.

In	particular,	any	information	saved	to	static	or	global	variables	in	the	first	run	of	the	program	is	not
available	within	find_next_station	procedure.

Example

Consider	the	following	call:

label(5,	10,	[0,	1,	1,	2],	[1,	2,	3,	4])

Stations (2 of 5)

There	are	a	 total	of	 	stations,	and	 	 links	connecting	pairs	of	stations	with	 indices	 ,	 ,	
	and	 .	Each	label	can	be	an	integer	from	 	to	 .

In	order	to	report	the	following	labelling:

Index Label

0 6

1 2

2 9

3 3

4 7

the	label	 procedure	 should	 return	 [,	 ,	 ,	 ,].	 The	 numbers	 in	 the	 following	 figure	 show	 the
indices	(left	panel)	and	assigned	labels	(right	panel).

Assume	the	labels	have	been	assigned	as	described	above	and	consider	the	following	call:

find_next_station(9,	6,	[2,	7])

This	means	that	the	station	holding	the	packet	has	label	 ,	and	the	target	station	has	label	 .	The
labels	of	stations	on	the	path	to	the	target	station	are	 .	Hence,	the	call	should	return	 ,	which
is	the	label	of	the	station	that	the	packet	should	be	forwarded	to	(which	has	index).

Consider	another	possible	call:

find_next_station(2,	3,	[3,	6,	9])

Stations (3 of 5)

The	procedure	should	return	 ,	since	the	target	station	with	label	 	is	a	neighbour	of	the	station	with
label	 ,	and	hence	should	receive	the	packet	directly.

Constraints

For	each	call	to	label:

	(for	all)

For	each	call	to	find_next_station,	the	input	comes	from	an	arbitrarily	chosen	previous	call	to
label.	Consider	the	labels	it	produced.	Then:

	and	 	are	labels	of	two	different	stations.
	is	the	sequence	of	all	labels	of	neighbours	of	the	station	with	label	 ,	in	ascending	order.

For	each	test	case,	 the	total	 length	of	all	arrays	 	passed	to	the	procedure	find_next_station
does	not	exceed	 	for	all	scenarios	combined.

Subtasks

1.	 (5	points)	 ,	no	station	has	more	than	 	neighbours.
2.	 (8	points)	 ,	link	 	connects	stations	 	and	 .
3.	 (16	points)	 ,	at	most	one	station	has	more	than	 	neighbours.
4.	 (10	points)	 ,	
5.	 (61	points)	

In	subtask	5	you	can	obtain	a	partial	score.	Let	 	be	the	maximum	label	value	returned	by	label
across	all	scenarios.	Your	score	for	this	subtask	is	calculated	according	to	the	following	table:

Maximum	label Score

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

Stations (4 of 5)

line	 :	

	blocks	follow,	each	describing	a	single	scenario.	The	format	of	each	block	is	as	follows:

line	 :	
line	 	():	
line	 :	 :	the	number	of	calls	to	find_next_station.
line	 	():	 :	indices	of	stations	involved	in	the	 -th	call
to	find_next_station.	 The	 station	 	 holds	 the	packet,	 the	 station	 	 is	 the	packet's
target,	and	the	station	 	is	the	station	that	the	packet	should	be	forwarded	to.

The	sample	grader	prints	the	result	in	the	following	format:

line	 :	

	blocks	corresponding	to	the	consecutive	scenarios	in	the	input	follow.	The	format	of	each	block	is
as	follows:

line	 	():	index	of	the	station,	whose	label	was	returned	by	the	 -th	call	to
find_next_station	in	this	scenario.

Note	that	each	run	of	the	sample	grader	calls	both	label	and	find_next_station.

Stations (5 of 5)

