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Abstract. I show how backtracking can be discovered naturally without using a recursive function 
(nor using a loop with an explicit stack). Rather, my approach involves a form of self application 
that can be elegantly expressed in an object-oriented program, and that is reminiscent of how 
recursion is done in lambda calculus. It also illustrates why reasoning about object-oriented pro-
grams can be hard. 
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1. Introduction 

This article can be viewed as an addition to Verhoeff (2018), which covers – what 
I believe to be – the basics of recursion. I will illustrate my approach to backtracking 
through the problem of solving simplified Binairo puzzles, explained below. Section 2 
considers various reasoning strategies to solve such puzzles, culminating in a non-
recursive backtracking strategy. Design details, Java code, and some refinements are 
discussed in Section 3, and the essence is extracted in Section 4. Section 5 concludes 
the article. I recommend that younger programmers first read §2 and §3.2 and then ex-
plore the source code provided in Verhoeff (2021), before reading the other sections. 

2. Reasoning Strategies to Solve Puzzles 

The puzzles in this article are simplified Binairos1, consisting of a square grid with an 
even number of rows and columns, partly filled with zeroes and ones (see Fig. 1). The ob-
jective is to fill the grid completely with zeroes and ones such that (Rule 1) nowhere three 

1 A.k.a. binary or Takuzu puzzles; see https://en.wikipedia.org/wiki/Takuzu
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or more equal symbols are horizontally or vertically adjacent, and (Rule 2) in each row 
and in each column, the number of zeroes equals the number of ones. The simplification is 
that we allow identical rows and columns. The given zeroes and ones cannot be changed 
when solving the puzzle, and you may assume that there is a unique solution. Try to solve 
the example in Fig. 1 if you have not done this kind of puzzle before. 

Puzzles can often be solved just by reasoning, and there is no need for ‘blind’ back-
tracking. Given Rules 1 and 2 for our puzzles, there are two obvious strategies to fill in 
what one could call forced bits. 

If in three horizontally or vertically adjacent cells two cells have the same 1. 
bit b, then the other cell must have the opposite of b, i.e. 1 − b. 
If in a row or column half of its cells have bit 2. b, then the remaining cells must 
have 1 − b. 

The correctness of these strategies follows from the fact that a solution exists. We 
call three horizontally or vertically adjacent cells a triplet, and a complete row or column 
a line. In pseudocode, these strategies can be expressed as follows. 

 1. Triplet strategy: Find a triplet t with one empty cell and a bit b, where b occurs 
twice in t, and fill the empty cell with bit 1 − b. 
 2. Line strategy: Find a line 
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Puzzles can often be solved just by reasoning, and there is no need for
‘blind’ backtracking. Given Rules 1 and 2 for our puzzles, there are two obvious
strategies to fill in what one could call forced bits.

1. If in three horizontally or vertically adjacent cells two cells have the same
bit b, then the other cell must have the opposite of b, i.e. 1 − b.

2. If in a row or column half of its cells have bit b, then the remaining cells
must have 1 − b.

The correctness of these strategies follows from the fact that a solution exists.
We call three horizontally or vertically adjacent cells a triplet, and a complete

row or column a line. In pseudocode, these strategies can be expressed as follows.

1. Triplet strategy: Find a triplet t with one empty cell and a bit b, where b
occurs twice in t, and fill the empty cell with bit 1 − b.

2. Line strategy: Find a line  with at least one empty cell and a bit b, where
b occurs in half of ’s cells, and fill all empty cells of  with bit 1 − b.

Note that such strategies take a puzzle as argument, and return a, possibly
updated, puzzle. We will leave that puzzle parameter implicit for now (think of
it as a global variable; see the next section for details). These strategies are non-
deterministic, and when they do not apply, they leave the puzzle unchanged.
Strategies must have the property that (i) they only change empty cells, and
(ii) they preserve solvability.

If you have applied a strategy and nothing changed, then it does not make
sense to apply it again. But if it did bring some change, then it might be
applicable again. Moreover, if the triplet strategy did not bring any changes,
but subsequent application of the line strategy did, then it would be good to
try the triplet strategy again (see Fig. 2).

This leads to the wish to define strategy combinators such as the following.

3. Fixed-point strategy: Repeatedly apply a given strategy until no further
change occurs. It takes a strategy as parameter.

4. Pair strategy: Apply two given strategies one after the other. It has two
strategy parameters, and can be nested to combine more strategies.

We call these meta-stategies, because they take one or more strategies as param-
eter. If we (as humans) consider the triplet strategy to be simpler to apply than
the line strategy, then we would probably use the following strategy FPFTL.

1A.k.a. binary or Takuzu puzzles; see https://en.wikipedia.org/wiki/Takuzu.

2

 with at least one empty cell and a bit b, where b 
occurs in half of 

2 Reasoning Strategies to Solve Puzzles
The puzzles in this article are simplified Binairos1, consisting of a square grid
with an even number of rows and columns, partly filled with zeroes and ones
(see Fig. 1). The objective is to fill the grid completely with zeroes and ones
such that (Rule 1) nowhere three or more equal symbols are horizontally or
vertically adjacent, and (Rule 2) in each row and in each column, the number
of zeroes equals the number of ones. The simplification is that we allow identical
rows and columns. The given zeroes and ones cannot be changed when solving
the puzzle, and you may assume that there is a unique solution. Try to solve
the example in Fig. 1 if you have not done this kind of puzzle before.

Puzzles can often be solved just by reasoning, and there is no need for
‘blind’ backtracking. Given Rules 1 and 2 for our puzzles, there are two obvious
strategies to fill in what one could call forced bits.

1. If in three horizontally or vertically adjacent cells two cells have the same
bit b, then the other cell must have the opposite of b, i.e. 1 − b.

2. If in a row or column half of its cells have bit b, then the remaining cells
must have 1 − b.

The correctness of these strategies follows from the fact that a solution exists.
We call three horizontally or vertically adjacent cells a triplet, and a complete

row or column a line. In pseudocode, these strategies can be expressed as follows.

1. Triplet strategy: Find a triplet t with one empty cell and a bit b, where b
occurs twice in t, and fill the empty cell with bit 1 − b.

2. Line strategy: Find a line  with at least one empty cell and a bit b, where
b occurs in half of ’s cells, and fill all empty cells of  with bit 1 − b.

Note that such strategies take a puzzle as argument, and return a, possibly
updated, puzzle. We will leave that puzzle parameter implicit for now (think of
it as a global variable; see the next section for details). These strategies are non-
deterministic, and when they do not apply, they leave the puzzle unchanged.
Strategies must have the property that (i) they only change empty cells, and
(ii) they preserve solvability.

If you have applied a strategy and nothing changed, then it does not make
sense to apply it again. But if it did bring some change, then it might be
applicable again. Moreover, if the triplet strategy did not bring any changes,
but subsequent application of the line strategy did, then it would be good to
try the triplet strategy again (see Fig. 2).

This leads to the wish to define strategy combinators such as the following.

3. Fixed-point strategy: Repeatedly apply a given strategy until no further
change occurs. It takes a strategy as parameter.

4. Pair strategy: Apply two given strategies one after the other. It has two
strategy parameters, and can be nested to combine more strategies.

We call these meta-stategies, because they take one or more strategies as param-
eter. If we (as humans) consider the triplet strategy to be simpler to apply than
the line strategy, then we would probably use the following strategy FPFTL.

1A.k.a. binary or Takuzu puzzles; see https://en.wikipedia.org/wiki/Takuzu.

2

’s cells, and fill all empty cells of 

2 Reasoning Strategies to Solve Puzzles
The puzzles in this article are simplified Binairos1, consisting of a square grid
with an even number of rows and columns, partly filled with zeroes and ones
(see Fig. 1). The objective is to fill the grid completely with zeroes and ones
such that (Rule 1) nowhere three or more equal symbols are horizontally or
vertically adjacent, and (Rule 2) in each row and in each column, the number
of zeroes equals the number of ones. The simplification is that we allow identical
rows and columns. The given zeroes and ones cannot be changed when solving
the puzzle, and you may assume that there is a unique solution. Try to solve
the example in Fig. 1 if you have not done this kind of puzzle before.

Puzzles can often be solved just by reasoning, and there is no need for
‘blind’ backtracking. Given Rules 1 and 2 for our puzzles, there are two obvious
strategies to fill in what one could call forced bits.

1. If in three horizontally or vertically adjacent cells two cells have the same
bit b, then the other cell must have the opposite of b, i.e. 1 − b.

2. If in a row or column half of its cells have bit b, then the remaining cells
must have 1 − b.

The correctness of these strategies follows from the fact that a solution exists.
We call three horizontally or vertically adjacent cells a triplet, and a complete

row or column a line. In pseudocode, these strategies can be expressed as follows.

1. Triplet strategy: Find a triplet t with one empty cell and a bit b, where b
occurs twice in t, and fill the empty cell with bit 1 − b.

2. Line strategy: Find a line  with at least one empty cell and a bit b, where
b occurs in half of ’s cells, and fill all empty cells of  with bit 1 − b.

Note that such strategies take a puzzle as argument, and return a, possibly
updated, puzzle. We will leave that puzzle parameter implicit for now (think of
it as a global variable; see the next section for details). These strategies are non-
deterministic, and when they do not apply, they leave the puzzle unchanged.
Strategies must have the property that (i) they only change empty cells, and
(ii) they preserve solvability.

If you have applied a strategy and nothing changed, then it does not make
sense to apply it again. But if it did bring some change, then it might be
applicable again. Moreover, if the triplet strategy did not bring any changes,
but subsequent application of the line strategy did, then it would be good to
try the triplet strategy again (see Fig. 2).

This leads to the wish to define strategy combinators such as the following.

3. Fixed-point strategy: Repeatedly apply a given strategy until no further
change occurs. It takes a strategy as parameter.

4. Pair strategy: Apply two given strategies one after the other. It has two
strategy parameters, and can be nested to combine more strategies.

We call these meta-stategies, because they take one or more strategies as param-
eter. If we (as humans) consider the triplet strategy to be simpler to apply than
the line strategy, then we would probably use the following strategy FPFTL.

1A.k.a. binary or Takuzu puzzles; see https://en.wikipedia.org/wiki/Takuzu.

2

 with bit 1 − b. 
Note that such strategies take a puzzle as argument, and return a, possibly updated, 

puzzle. We will leave that puzzle parameter implicit for now (think of it as a global vari-
able; see the next section for details). These strategies are nondeterministic, and when 
they do not apply, they leave the puzzle unchanged. Strategies must have the property that 
(i) they only change empty cells, and (ii) they preserve solvability, i.e., if the puzzle was 
solvable before applying the strategy then it is still solvable after applying the strategy.

If you have applied a strategy and nothing changed, then it does not make sense to 
apply it again. But if it did bring some change, then it might be applicable again. More-
over, if the triplet strategy did not bring any changes, but subsequent application of the 
line strategy did, then it would be good to try the triplet strategy again (see Fig. 2). 

This leads to the wish to define strategy combinators such as the following.
 3. Fixed-point strategy: Repeatedly apply a given strategy until no further change 
occurs. It takes a strategy as parameter. 

0 0 1

1 1
0 0 1
0 1 0

1
1

1 0

Figure 1: The initial state of an 8× 8 Binary Puzzle

2 Reasoning Strategies to Solve Binary Puzzles

Binary puzzles can often be solved just by reasoning, and there is no need for
‘blind’ backtracking. Given Rules 1 and 2 for binary puzzles, there are two
obvious strategies to fill in what one could call forced bits:

1. If in three horizontally or vertically adjacent cells two cells have the same
bit b, then the other cell must have the opposite of b, i.e. 1− b.

2. If in a row or column half of its cells have bit b, then the remaining cells
must have 1− b.

We call three horizontally or vertically adjacent cells a triplet, and a complete
row or column a line. In pseudocode, these strategies are programmed as follows.

1. Triplets strategy: For all triplets t with one empty cell, and for all bits b,
if b occurs twice in t, then fill the empty cell with bit 1− b.

2. Lines strategy: For all lines  with at least one empty cell, and for all
bits b, if b occurs in half of ’s cells, then fill all empty cells with bit 1− b.

Note that such strategies take a Binairo as argument, that we will leave implicit
for now (think of it as a global variable; see the next section for details).

If you have applied a strategy, and nothing changed, then it does not make
sense to apply it again. But if it did lead to at least one change, then it might be
applicable again. Moreover, if the triplets strategy did not lead to any changes,
but subsequent application of the lines strategy does, then it would be good to
try the triplets strategy again (see Fig. 2).

This leads to the wish to combine strategies (as abstract recipes) as follows.

3. Fixed-point strategy: Repeatedly apply a given strategy until no further
changes occurred. It takes a strategy as parameter.

4. Pair strategy: Apply two given strategies one after the other. It has two
strategy parameters, and can be nested.

We call these meta-stategies, because they take one or more strategies as pa-
rameter. If we (as humans) consider the triplets strategy to be simpler to apply
than the lines strategy, then we would probably use the following strategy:

5. FPTL = fixed-point(pair(FPT, lines)) where

2

Fig. 1. Initial state of our 8 × 8 example puzzle. 



Look Ma, Backtracking without Recursion 121

 4. Pair strategy: Apply two given strategies one after the other. It has two strategy 
parameters, and can be nested to combine more strategies. 

We call these meta-stategies, because they take one or more strategies as parameter. 
If we (as humans) consider the triplet strategy to be simpler to apply than the line strat-
egy, then we would probably use the following strategy F P F T L. 

 5. F P F T L = fixed_point (pair (FT, line)) where 
 6. F T = fixed_point (triplet).

Applying the F T and F P F T L strategies to the puzzle in Fig. 1 leads to Fig. 2. 
For the example puzzle, we are then stuck. You may already have discovered the fol-

lowing strategy to help out. 
 7. Contradiction strategy: Find an empty cell c and a bit b, where putting bit b in 
cell c leads to an invalid state after applying the F P F T L strategy, and fill cell 
c with bit 1 − b. 

The contradiction strategy speculates and looks ahead. It is correct, because by 
assumption there exists a solution. You can see it in action in Fig. 3. In fact, fixed_
point (pair (F P F T L, contradiction)) solves our example puzzle. 

5. FPFTL = fixed point(pair(FT , line)) where

6. FT = fixed point(triplet)

Applying the FT and FPFTL strategies to the puzzle in Fig. 1 leads to Fig. 2.
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Figure 2: State after applying the FT strategy to Fig. 1 (left), and after the
FPFTL strategy (right), where the line strategy yielded the blue (underlined) 1
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Figure 3: When trying 0 in the red cell (with tilde), and applying FPFTL, the
line strategy yields the 1s in the yellow cells, violating Rule 1 (left); therefore the
red cell must contain 1; applying fixed point(pair(FPFTL, contradiction)), we
get the shown solution (right), where the colors encode the responsible strategy:
yellow–triplet, blue(underline)–line, red(tilde)–contradiction.

Observe that the pair of triplet and line strategies together can be viewed as
special case of the following direct contradiction strategy.

8. Direct contradiction strategy: Find an empty cell c and bit b, where
putting bit b in cell c directly leads to an invalid state, and fill cell c
with 1 − b.
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Observe that the pair of triplet and line strategies together can be viewed as special 
case of the following direct contradiction strategy. 

 8. Direct contradiction strategy: Find an empty cell c and bit b, where putting bit 
b in cell c directly leads to an invalid state, and fill cell c with 1 − b. 

Note that this may be less efficient, but we now do have 
 9. F P F T L = fixed_point (direct_contradiction). 

To avoid code duplication (DRY = Don’t Repeat Yourself), let’s see if we can unify 
the code for these two contradiction strategies by generalization via a strategy parameter, 
making it a meta-strategy. 

 10. General contradiction strategy: Find an empty cell c and a bit b, where putting 
bit b in cell c leads to an invalid state after applying a given strategy, and then 
fill cell c with 1 − b. 

Its usefulness depends on how good the supplied strategy is at finding forced bits. 
But even when the supplied strategy does nothing, the general contradiction strategy 
is correct. Let’s define the empty strategy as doing nothing (applying the identity 
function). 

 11. Empty strategy: Do nothing. 
Then we see that both contradiction and direct contradiction are indeed special cases 

of general contradiction. 
 12. contradiction = general_contradiction (F P F T L). 
 13. direct_contradiction = general_contradiction (empty). 

In fact, now we no longer need F P F T L, because it can be expressed in terms of the 
general contradiction strategy via 9 and 13, and the contradiction strategy now becomes 
a double application of general contradiction: 

 14. F P F T L = fixed_point (general_contradiction (empty)). 
 15. contradiction = general_contradiction (fixed_point (general_contradiction  (emp-
ty))).

2.1. Self Application

Then the idea occurred to me that instead of F P F T L in the contradiction strategy, we 
should use the best strategy we can think of to find a sequence of forced bits leading to a 
contradiction. So, what about supplying itself as parameter? Like this: 

 16. general_contradiction (general_contradiction (general_contradiction (...))). 
Of course, we cannot define it with those dots. But we can define a variant H of the 

general contradiction strategy that expects a hyper-strategy h  as parameter, viz. a strat-
egy that takes a hyper-strategy (not necessarily itself) as parameter. 

 17. Hyper-contradiction (hyper-strategy h): Find an empty cell c and a bit b, where 
putting bit b in cell c leads to an invalid state after applying strategy h (h), and 
fill cell c with 1 − b. N.B. h could ignore its argument! 
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Therefore, the hyper-contradiction strategy is in fact also a hyper-strategy, and can 
be passed as parameter to itself. Now we can properly define the strategy in 16 as H  (H ). 
Note that this is a regular strategy (not meta or hyper). 

It works (thanks to the two key properties of strategies), but it is not guaranteed to 
solve puzzles by itself. It may have to be repeated, which we can do by applying the 
fixed-point strategy. But if that is a better strategy, then we want to use that as param-
eter in the hyper-contradiction strategy. This can be accomplished by hyper-strategy F H 
defined by 

 18. F H (hyper_strategy) = fixed_point (hyper_contradiction (hyper_strategy))))
and applying it to itself, which basically gives us backtracking! 

 19. backtracking = F H (F H). 
If there exists a unique solution (which is assumed), anything other than the cor-

rect bit in a cell must lead to a contradiction. And it terminates because strategies only 
fill empty cells. Note that if the puzzle has multiple solutions, then our backtracking  
strategy won’t find any of them, because then there exists at least one cell where both 0 
and 1 are valid, and there won’t be a contradiction. 

Observe that these function definitions are not recursive (though there is self applica-
tion). Of course, there are some details to take care of to make all of this work in a real 
(strongly typed) programming language. For that, see the next section. 

3. Design Details, Java Code, and Refinements 

One could try to implement my approach to backtracking in a functional programming 
language, as sketched above. But this can lead to a typing problem because of the self ap-
plication. I found it a nice challenge to code it in the object-oriented language Java (which 
we use in our education, and which used to be permitted at the International Olympiad in 
Informatics). To keep the code easily understandable for non-Java programmers, I stick 
to a minimal subset, avoiding interfaces and generic type parameters. Also see (Verhoeff, 
2018, §6) for how to type and define functions that can be self-applied in Java.

First, I look at some design details in §3.1, still using a functional approach. Note 
that these are mathematical functions, and not programming-language functions, that is, 
without side effects operating on (immutable) values. Next, I present an overview of the 
Java source code, and finally, I discuss some refinements (that could serve as exercises). 
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program from the functional description in Section 2. The focus is on implementing 
strategies. Recall that a strategy is a function from the domain of puzzles, denoted by 

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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would be written as m (s, p). The call m (s) is called a partial application of m, be-
cause it lacks the second argument, which is needed to start the evaluation. 

Let’s introduce shorter names for the various strategies introduced in §2. 
T  ● ∈ 
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F (s) (p) = p if s (p) = p else F (s) (s (p)). 

This is recursive, but in a Java program, this would be done via a do-while loop, 
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es empty cells only. 

P ●  ∈ (
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functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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 × 

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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 – pair meta-strategy, taking a pair of strategies as argument, such 
that P (s1, s2) (p) = s2 (s1 (p)); this corresponds to function composition: P (s1, s2) = 
s2 ◦ s1. 
E ●  ∈ 

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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 – empty strategy, with E (p) = p for all p ∈ 

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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 – general contradiction meta-strategy (see §2). 
H ●  ∈ 

curried function of two arguments, viz. first a strategy and then a puzzle yielding
a puzzle: M = S → P → P, where the latter is to be read parenthesized as
S → (P → P). Thus, if m ∈ M, s ∈ S, and p ∈ P, we have m(s) ∈ S and
m(s)(p) ∈ P. Uncurried, the latter would be written as m(s, p). The call m(s)
is called a partial application of m, because it lacks the second argument, which
is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.

• T ∈ S – triplet strategy (see §2)

• L ∈ S – line strategy (see §2)

• F ∈ M – fixed-point meta-strategy, satisfying

F (s)(p) = p if s(p) = p else F (s)(s(p))

This is recursive, but in a Java program, this would be done via a do-while
loop, not needing a stack. It terminates because every update that strat-
egy s makes to p changes empty cells only.

• P ∈ (S × S) → S – pair meta-strategy, taking a pair of strategies as
argument, such that P (s1, s2)(p) = s2(s1(p)); this corresponds to function
composition: P (s1, s2) = s2 ◦ s1.

• E ∈ S – empty strategy, with E(p) = p for all p ∈ P.

• G ∈ M – general contradiction meta-strategy (see §2)

• H ∈ H → S, where H is the type of hyper-strategies (see §2), i.e., we have
H = H → S (this is an infinite type that most functional languages don’t
like, but that we can get to work in Java).

Unfortunately, in OO programming, currying and partial application don’t come
for free. Suppose we have a function f ∈ A × B → C with curried version
f  ∈ A → B → C. In that case, f (a) ∈ B → C is a partial application
of f , and f (a)(b) = f(a, b). How can this be done in Java, where there are no
separate functions? Instead, we have a method m — static or not — in some
class C:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

To use this function, create an instance of its class, and call the method:
6 C obj = new C();
7 System.out.println(obj.m(1, 3)); // 4
8 System.out.println(obj.m(2, 3)); // 7

To define a function partially applied only to its first argument, define a new
class as carrier for such partially applied functions:

6

 → 

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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 – hyper-contradiction hyper-strategy, where we have 

curried function of two arguments, viz. first a strategy and then a puzzle yielding
a puzzle: M = S → P → P, where the latter is to be read parenthesized as
S → (P → P). Thus, if m ∈ M, s ∈ S, and p ∈ P, we have m(s) ∈ S and
m(s)(p) ∈ P. Uncurried, the latter would be written as m(s, p). The call m(s)
is called a partial application of m, because it lacks the second argument, which
is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.

• T ∈ S – triplet strategy (see §2)

• L ∈ S – line strategy (see §2)

• F ∈ M – fixed-point meta-strategy, satisfying

F (s)(p) = p if s(p) = p else F (s)(s(p))

This is recursive, but in a Java program, this would be done via a do-while
loop, not needing a stack. It terminates because every update that strat-
egy s makes to p changes empty cells only.

• P ∈ (S × S) → S – pair meta-strategy, taking a pair of strategies as
argument, such that P (s1, s2)(p) = s2(s1(p)); this corresponds to function
composition: P (s1, s2) = s2 ◦ s1.

• E ∈ S – empty strategy, with E(p) = p for all p ∈ P.

• G ∈ M – general contradiction meta-strategy (see §2)

• H ∈ H → S, where H is the type of hyper-strategies (see §2), i.e., we have
H = H → S (this is an infinite type that most functional languages don’t
like, but that we can get to work in Java).

Unfortunately, in OO programming, currying and partial application don’t come
for free. Suppose we have a function f ∈ A × B → C with curried version
f  ∈ A → B → C. In that case, f (a) ∈ B → C is a partial application
of f , and f (a)(b) = f(a, b). How can this be done in Java, where there are no
separate functions? Instead, we have a method m — static or not — in some
class C:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

To use this function, create an instance of its class, and call the method:
6 C obj = new C();
7 System.out.println(obj.m(1, 3)); // 4
8 System.out.println(obj.m(2, 3)); // 7

To define a function partially applied only to its first argument, define a new
class as carrier for such partially applied functions:
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curried function of two arguments, viz. first a strategy and then a puzzle yielding
a puzzle: M = S → P → P, where the latter is to be read parenthesized as
S → (P → P). Thus, if m ∈ M, s ∈ S, and p ∈ P, we have m(s) ∈ S and
m(s)(p) ∈ P. Uncurried, the latter would be written as m(s, p). The call m(s)
is called a partial application of m, because it lacks the second argument, which
is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.

• T ∈ S – triplet strategy (see §2)

• L ∈ S – line strategy (see §2)

• F ∈ M – fixed-point meta-strategy, satisfying

F (s)(p) = p if s(p) = p else F (s)(s(p))

This is recursive, but in a Java program, this would be done via a do-while
loop, not needing a stack. It terminates because every update that strat-
egy s makes to p changes empty cells only.

• P ∈ (S × S) → S – pair meta-strategy, taking a pair of strategies as
argument, such that P (s1, s2)(p) = s2(s1(p)); this corresponds to function
composition: P (s1, s2) = s2 ◦ s1.

• E ∈ S – empty strategy, with E(p) = p for all p ∈ P.

• G ∈ M – general contradiction meta-strategy (see §2)

• H ∈ H → S, where H is the type of hyper-strategies (see §2), i.e., we have
H = H → S (this is an infinite type that most functional languages don’t
like, but that we can get to work in Java).

Unfortunately, in OO programming, currying and partial application don’t come
for free. Suppose we have a function f ∈ A × B → C with curried version
f  ∈ A → B → C. In that case, f (a) ∈ B → C is a partial application
of f , and f (a)(b) = f(a, b). How can this be done in Java, where there are no
separate functions? Instead, we have a method m — static or not — in some
class C:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

To use this function, create an instance of its class, and call the method:
6 C obj = new C();
7 System.out.println(obj.m(1, 3)); // 4
8 System.out.println(obj.m(2, 3)); // 7

To define a function partially applied only to its first argument, define a new
class as carrier for such partially applied functions:

6

 → 

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a
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Unfortunately, in OO programming, currying and partial application don’t come for 
free. Suppose we have a function f ∈ A × B → C with curried version f ' ∈ A → B → C. 
In that case, 
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argument and possibly altered. In the O O world, this is frowned upon, because the up-
dates to the puzzle are quite local. So, a mutable type of puzzles is preferred, to avoid 
copying lots of data that is unchanged. (In functional programming this is frowned 
upon, and one would use lazy updaters applied to the puzzle, but that is outside the 
scope of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at meta-
strategies. These have type  =  → . In a functional setting, this is a curried func-
tion of two arguments, viz. first a strategy and then a puzzle yielding a puzzle:  = 

 →  → , where the latter is to be read parenthesized as  → (  → ). Thus, if 
m ∈ , s ∈  , and p ∈ , we have m (s) ∈  and m (s) (p) ∈ . Uncurried, the latter 
would be written as m (s, p). The call m (s) is called a partial application of m, be-
cause it lacks the second argument, which is needed to start the evaluation. 

Let’s introduce shorter names for the various strategies introduced in §2. 
T  ● ∈  – triplet strategy (see §2).
L  ● ∈  – line strategy (see §2). 
F  ● ∈  – fixed-point meta-strategy, satisfying 

F (s) (p) = p if s (p) = p else F (s) (s (p)). 

This is recursive, but in a Java program, this would be done via a do-while loop, 
not needing a stack. It terminates because every update that strategy s makes to p chang-
es empty cells only. 

P ●  ∈ (  × ) →  – pair meta-strategy, taking a pair of strategies as argument, such 
that P (s1, s2) (p) = s2 (s1 (p)); this corresponds to function composition: P (s1, s2) = 
s2 ◦ s1. 
E ●  ∈  – empty strategy, with E (p) = p for all p ∈ .
G ●  ∈  – general contradiction meta-strategy (see §2). 
H ●  ∈ 

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 → , where 
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int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 is the type of hyper-strategies – general hyper-contradiction 
hyper-strategy (see §2), i.e., we have 
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}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
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}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

  →  (this is an infinite type that most 
functional languages don’t like, but that we can get to work in Java). 

Unfortunately, in OO programming, currying and partial application don’t come for 
free. Suppose we have a function f ∈ A × B → C with curried version f ' ∈ A → B → C. 
In that case, f ‘(a) ∈ B → C is a partial application of f, and f ‘(a) (b) = f (a, b). How can 
this be done in Java, where there are no separate functions? Instead, we have a method 
m – static or not – in some class C: 

To use this function, create an instance of its class, and call the method: 

1     class C { 
2  int m(int x, int y) { 
3   return x * x + y; 
4  } 
5     } 

(a) ∈ B → C is a partial application of f, and 
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argument and possibly altered. In the O O world, this is frowned upon, because the up-
dates to the puzzle are quite local. So, a mutable type of puzzles is preferred, to avoid 
copying lots of data that is unchanged. (In functional programming this is frowned 
upon, and one would use lazy updaters applied to the puzzle, but that is outside the 
scope of this article.)
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not needing a stack. It terminates because every update that strategy s makes to p chang-
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that P (s1, s2) (p) = s2 (s1 (p)); this corresponds to function composition: P (s1, s2) = 
s2 ◦ s1. 
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System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

  →  (this is an infinite type that most 
functional languages don’t like, but that we can get to work in Java). 

Unfortunately, in OO programming, currying and partial application don’t come for 
free. Suppose we have a function f ∈ A × B → C with curried version f ' ∈ A → B → C. 
In that case, f ‘(a) ∈ B → C is a partial application of f, and f ‘(a) (b) = f (a, b). How can 
this be done in Java, where there are no separate functions? Instead, we have a method 
m – static or not – in some class C: 

To use this function, create an instance of its class, and call the method: 

1     class C { 
2  int m(int x, int y) { 
3   return x * x + y; 
4  } 
5     } 

(a) (b) = f (a, b). How can 
this be done in Java, where there are no separate functions? Instead, we have a method 
m – static or not – in some class C: 

To use this function, create an instance of its class, and call the method: 

1     class C { 
2  int m(int x, int y) { 
3   return x * x + y; 
4  } 
5     } 
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To define a function partially applied only to its first argument, define a new class as 
carrier for such partially applied functions: 

Finally, we create objects from this class to get partially applied versions of m: 

You could consider this an O O design pattern for partial function applica-
tion. Unfortunately, it is quite bureaucratic and verbose for such a simple idea. 
 You can see a resemblance to the Command design pattern here. That pattern is typically 
used to capture all parameters, and just delay the call. The only reason to delay a call in 
an O O language is because there is a side effect that must be properly synchronized with 
other actions. In a functional language, there are no side effects in function calls, and 
because of lazy (‘on-demand’) evaluation, you just call the function right away, relying 
on the compiler and runtime system to decide whether its execution is really needed.

When defining a function in an O O language, client code can pass the arguments to 
a method in several ways: 

Via parameters of the method (at time of the call).  ●
Via instance variables in the method’s object (in advance of the call), with these  ●
variants: 

6  C obj = new C(); 
7  System.out.println(obj.m(1, 3)); // 4 
8  System.out.println(obj.m(2, 3)); // 7 

9     class PartialCm { 
10  private C obj; // ’receiver’ 
11  private int x; // first argument 
12 

13  PartialCm(C obj, int x) { 
14   this.obj = obj; 
15   this.x = x; 
  // don’t call obj.m, but store x (’lazy’)
16  } 
17 

18  int apply(int y) { 
19   return obj.m(x, y); // call with both arguments 
20  } 
21    } 

22  // create partial applications 
23  PartialCm m_1 = new PartialCm(obj, 1); 
24  PartialCm m_2 = new PartialCm(obj, 2); 
25  // apply them 
26  System.out.println(m_1.apply(3)); // 4 
27  System.out.println(m_2.apply(3)); // 7 
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via one or more, possibly parameterized,  ◦ constructors (only once); 
via one or more, possibly parameterized,  ◦ setter methods; 
via  ◦ direct access to the (non-private) instance variables. 

We need to decide how to handle the parameters of (meta-)strategies. 
We opt for a puzzle class with mutable objects, and all the strategies will work on the 

same object. Because of mutability we now also need to worry about reverting changes 
made to the puzzle state in contradiction strategies. We choose to pass the puzzle param-
eter via a static instance variable, set once by the client code. That way we also avoid 
the need for defining constructors in subclasses that are not meta-strategies. 

Concerning strategy parameter(s) of meta-strategies, we did the following. Since we 
cannot pass pure functions, we pass an object which the intended function as instance 
method. Also see Verhoeff (2012) on passing functions as arguments in Java. 

For the fixed-point and pair strategies, we pass them via their constructor and store  ●
them in instance variables. Polymorphism allows these strategies to abstract from 
the precise nature of their strategy parameters. 
For the contradiction strategies, we use instance variables set directly by the client  ●
code. In Section 4, you can see how this could have been avoided. 

3.2. Java Code 

The Java source code demonstrating that the approach to backtracking sketched in Sec-
tion 2 really works is available in Verhoeff (2021). I have attempted to keep the code as 
simple as possible. To do so, I have sacrificed some good O O programming habits. For 
instance, I have omitted access modifiers (public and private) wherever possible. 
This makes instance variables non-encapsulated, and hence we don’t need setters and 
getters.

First, an overview of the classes, focusing only on the essentials. 
Puzzle ●  – a mutable puzzle with a square grid of Cells; all cells are also available 
for easy traversal in a single Group (for the contradiction strategies), and via lists 
of all Triplets and all Lines (for the corresponding strategies); boolean methods 
isValid (to check for rule violations) and isSolved. 
Cell ●  – a mutable cell with its state, and some global constants. 
Group ●  – a list of Cells; generalizes Triplet and Line, i.e., it has common code 
for 

constructing a group from a rectangular block in a puzzle’s grid  ◦
frequency counting of cell states (for validity check and for strategies)  ◦
bulk filling of empty cells (for triplet and line strategies)  ◦

Subclasses: 
Triplet ◦  and Line – implement isValid (for Puzzle.isValid and the 
contradiction strategies) 

Strategy ●  – abstract base class for strategies; carrier of the method apply that 
applies the strategy to the static puzzle injected by the client; apply must be 
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an instance method to allow meta-strategies, such as the pair strategy, to operate on 
arbitrary strategies; see below for parameters and returned value of apply. 
Subclasses: 

TripletStrategy ◦  and LineStrategy – to fill in a forced bit based on the 
rules for validity of Triplet and Line 
FixedPointStrategy ◦  – to repeat given strategy until no change; the strat-
egy to repeat is injected via the constructor 
PairStrategy ◦  – to apply two strategies after each other; these strategies are 
injected via the constructor 
Not present:  ◦ ContradictionStrategy – this is done in Tests via Gener-
alContradictionStrategy 
EmptyStrategy ◦  – to do nothing 
DirectContradictionStrategy ◦  – special case of the general contradic-
tion strategy using the empty strategy as helper; no longer needed 
GeneralContradictionStrategy ◦  – to look for a contradiction after ap-
plying a given strategy; the strategy to help find a contradiction is set directly 
by the client code; also used to define the hyper-contradiction hyper-strate-
gy
Not present:  ◦ HyperContradictionStrategy – is already offered by Gen-
eralContradictionStrategy, because the strategy parameter strat 
passed as instance variable, can be a hyper-strategy (which also has type 
Strategy); self application cannot work via the constructor; client code sets 
it directly; this needs to be done only once, since all applications of the hy-
per-contradiction strategy will have the same actual strategy parameter (viz. 
itself) 

Command ●  – abstract base class for commands that modify the puzzle’s state; sup-
ports reverting an executed command; uses the Command design pattern. 
Subclasses: 

SetStateCommand ◦  – command to set and revert state of given cell 
CompoundCommand ◦  – a list of commands executed in sequence; uses the 
Composite design pattern; in traditional recursive backtracking, the old cell 
state is stored in a local variable of the recursive invocation instead of a com-
mand 

Logging ●  – a utility class with static methods to do logging. 
Tests ●  – class with main method to run some tests. 
LookMa ●  – class with main method to run and time self-applied strategies. 

There is one more thing worth discussing here, and that is how the method Strat-
egy.apply() evolved as we added strategies. 

 1. void apply() – suffices for triplet, line, pair, and empty strategies. 
 2. boolean apply() returning whether puzzle was changed – needed for fixed-
point strategy (to avoid copying the old state and comparing it); other strategies 
ignore the result. 
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 3. int apply() returning number of changes – useful for logging; fixed-point 
strategy compares result to 0; other strategies ignore the result. 
 4. Command apply() returning all applied puzzle changes, that can be reverted; 
needed for (general) contradiction strategy; the fixed-point strategy uses the 
command’s size; other strategies ignore the result .
 5. Command apply(int level) – useful to restrict self-nesting depth and to do 
indented logging; this is in the current code base. 
 6. instance variable untilFirstChange – (default value true) added later to 
control whether strategies stop at the first change (in an earlier version, strate-
gies would complete one sweep, possibly accumulating multiple changes; that 
behavior can be obtained by setting untilFirstChange to false); the current 
behavior is useful when you want to give a single hint; repeated application must 
now be obtained through the fixed-point strategy.

3.3. Refinements 

There are many ways in which this approach can be improved. I present some sugges-
tions as exercises. 

The pair strategy can be generalized to the  ● compound strategy, which operates on 
a list of strategies. Implement it using the Composite design pattern, where one can 
dynamically add strategies at run-time to an initially empty strategy. The empty 
compound strategy can now be used instead of the empty strategy. 
The triplet/line strategies, iterate over the triplets/lines and then over that group to  ●
fill empty cells as applicable. Instead, iterate over the grid’s empty cells, and for 
each cell iterate over its triplets/lines, to fill the empty cells as applicable. For this, 
each cell needs to know in what triplets and lines it occurs. (This also turns out to 
be useful for other refinements.) 
Typically, one uses only the line strategy (instead of  ● F P F T L) in the contradiction 
strategy. In fact, contradiction often only applies the line strategy to the two lines 
that intersect at the empty cell being considered. For that, it would help if each cell 
would know in what lines it occurs. 
The presented backtracking strategy performs badly. If it tries bit 0 and this is cor- ●
rect, then it will find a solution, which it ignores because there is no contradiction. 
Then it will try bit 1, which of course leads to a contradiction (because there is only 
one solution). And only then will it conclude that there must be a 0 in the tried cell. 
When the example puzzle in Fig. 1 is solved by the self-applied fixed-point hyper-
contradiction hyper-strategy, it finds 33 554 431 solutions along the way. 
We can remedy this by reporting solutions early, e.g., by throwing an exception in  ●
SetStateCommand. Then we have a more traditional backtracking algorithm. It 
would also help to report contradictions early, again by throwing an(other) excep-
tion. 
Improve performance further, by maintaining an instance variable in  ● Group with 
the frequency counts of the group’s cell states, to avoid their repeated re-compu-
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tation. For that, each cell needs to know in which groups it occurs, so that when 
it changes state, all (and only) the relevant counts can be updated. Instead of the 
counts, you could maintain a list of cells per state, to make it easy to traverse cells 
of a particular state in that group. 
To simplify experimentation with strategies, define a Domain-Specific Language  ●
(DSL) to construct strategies. For example, in the functional notation of §3.1, the 
strategy expression F (P (F (P (F (T ), L))  C)) is not so complicated, but in the 
Java code, it becomes a multi-statement code fragment. I would prefer to write an 
even shorter expression like ((T  *; L)*; C)* and have this interpreted or expanded 
automatically.

4. Object-Oriented Programming is Hard 

Object-oriented programming (OOP) offers various powerful language features, but 
these need to be used with care. In this section, I will boil down my approach to the bare 
essence, thereby pinpointing one of the pains of OOP. 

Edsger Dijkstra (1968) fulminated against the goto statement, because it made 
reasoning about (the correctness of) programs unnecessarily hard (look up: ‘spaghetti 
code’). Structured programming did away with the goto statement, by restricting the 
flow of control to language constructs with unique entry and exit points (e.g., if-else, 
for, while). A next step in the evolution of programming languages incorporated pro-
cedural abstraction, where one can introduce named parameterized abbreviations for 
groups of statements, a.k.a. functions. And then came data abstraction, where one can 
introduce named parameterized (generic) type abbreviations for groups of variables and 
related operations, a.k.a. classes. Programming with such classes is often referred to as 
object-oriented programming. Dijkstra (1989) considered OOP “an exceptionally bad 
idea which could only have originated in California”. Here is an example to show why. 
Consider the following class. 

Let me talk you through the code, and in the meantime you can try to see the con-
nection to backtracking via self application. The class Selfish has no instance vari-
ables and a single instance method f, that takes an object of type Selfish as parameter. 
Note that the Java compiler compiles this, even though it is a cyclic type definition. 
Moreover, note that the compile-time type of parameter x is Selfish. Thanks to the 

28     class Selfish { 
29  void f(Selfish x) { 
30   System.out.println(″Working ...″); 
31   x.f(x); 
  // Not iterative/recursive, but self-applicative 
32   System.out.println(″... and done!″); 
33  } 
34     } 
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support of polymorphism, however, the actual run-time type of the argument supplied 
to f can be any subclass of Selfish. Therefore, it is unclear (at compile-time) which 
f-functionality is invoked on line 31. This is worse than a goto statement, because with 
a goto statement, its control destination is known at compile-time. But with polymor-
phism, the control destination depends on the run-time circumstances (and could even 
depend on external input). 

Here is a subclass of Selfish: 

Class Innocent overrides the behavior of f. Now consider the following objects 
and calls of f (see DemoSelfish.java in Verhoeff (2021)). Can you predict the execu-
tion result? 

No loop, no (static) recursion, but still a disaster happens. And that in such a small 
piece of code. Thanks to dynamic (re)configuration. Spaghetti code is bad, but goto 
statements are at least static. This example demonstrates something far worse: dynamic 
spaghetti. It makes for a great job interview question. Here, I rest my case. 

5. Conclusion 

The title of this article refers to the meme “Look ma, no hands”2, said by kids proudly 
showing off to their mom that they can ride a bike without hands on the handlebars 
(it is also deployed in various jokes). That also captured my feeling when I discovered 
the approach to backtracking presented here. 

I demonstrated that the power of self application can be discovered quite natu-
rally in the context of what is traditionally called backtracking, e.g. when solving 
combinatorial puzzles. It gives rise to programs that do not employ static recursion, 

2 https://wordhistories.net/2020/04/14/look-no-hands/ 

35     class Innocent extends Selfish { 
36  @Override 
37  void f(Selfish x) { 
38   System.out.println(″I’m innocent!″); 
39  } 
40     }

41  Selfish omega = new Selfish(); 
42  Selfish innocent = new Innocent(); 
43 

44  innocent.f(innocent); 
45  innocent.f(omega); 
46  omega.f(innocent); 
47  omega.f(omega); 



Look Ma, Backtracking without Recursion 131

where the body of function f contains function calls that can be traced statically (i.e., 
at compile time) to a call of f itself, but rather that employ a form of dynamic recur-
sion. In the latter form, the traditional recursive calls are generalized (abstracted) to 
an additional function parameter, say g, of f (in OO, g will be a method of a parameter 
object). So, when one reasons about the program text of f, one does not know what 
the actual parameter g will be. Client code can later decide what function to provide 
for g in the call of f. You obtain recursion when calling f with itself as actual param-
eter for g. It is now also clear that one needs to reason about such programs in terms 
of contracts, that specify the pre-and post-conditions (assumptions and effects) of 
the functions f and g. Contractual reasoning is also the only way to get to grips with 
dynamic spaghetti. 

To avoid misunderstandings, I mention two caveats.

I am not claiming that the approach to backtracking in this article is to be preferred.  ●
It is purely meant as an interesting and possibly insightful approach. In fact, the 
version that I presented is inefficient, though it can be made efficient. 
The phrase ‘without recursion’ in the title is open to debate. But it is certainly  ●
not recursion in the traditional sense: a function having static calls to itself, or a 
container class having instance variables of its own type (think of a BinaryTree 
class containing instance variables left and right of type BinaryTree, a so-called 
recursive type). There is also no loop with an explicit stack. But in my Java code, 
you could argue, the class GeneralContradictionStrategy uses an instance 
variable referring to another strategy and this is like a recursively defined singly-
linked list type. Dynamically it is configured as an ‘infinite’ list with itself as tail. 
However, we have shown in Section 4, that you could achieve the same without 
instance variables and just with parameters. 

See (Verhoeff, 2018, §6) for more examples of ‘recursion’ without recursively 
defined functions, using self application instead and without using instance variables. 
See Verhoeff (2010) for a programming challenge (with interactive hints, using Tom’s 
JavaScript Machine) that involves self referencing. 
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