
Olympiads in Informatics, 2021, Vol. 15, 119–132
© 2021 IOI, Vilnius University
DOI: 10.15388/ioi.2021.10

119

Look Ma, Backtracking without Recursion
Dedicated to my colleague Ruurd Kuiper, on the occasion of his retirement

Tom VERHOEFF
Mathematics and Computer Science, Eindhoven University of Technology
Groene Loper 5, 5612 AE, Eindhoven, Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. I show how backtracking can be discovered naturally without using a recursive function
(nor using a loop with an explicit stack). Rather, my approach involves a form of self application
that can be elegantly expressed in an object-oriented program, and that is reminiscent of how
recursion is done in lambda calculus. It also illustrates why reasoning about object-oriented pro-
grams can be hard.

Keywords: computer science, programming, object-oriented, functional, backtracking, recur-
sion, fixed-point combinator, self application.

1. Introduction

This article can be viewed as an addition to Verhoeff (2018), which covers – what
I believe to be – the basics of recursion. I will illustrate my approach to backtracking
through the problem of solving simplified Binairo puzzles, explained below. Section 2
considers various reasoning strategies to solve such puzzles, culminating in a non-
recursive backtracking strategy. Design details, Java code, and some refinements are
discussed in Section 3, and the essence is extracted in Section 4. Section 5 concludes
the article. I recommend that younger programmers first read §2 and §3.2 and then ex-
plore the source code provided in Verhoeff (2021), before reading the other sections.

2. Reasoning Strategies to Solve Puzzles

The puzzles in this article are simplified Binairos1, consisting of a square grid with an
even number of rows and columns, partly filled with zeroes and ones (see Fig. 1). The ob-
jective is to fill the grid completely with zeroes and ones such that (Rule 1) nowhere three

1 A.k.a. binary or Takuzu puzzles; see https://en.wikipedia.org/wiki/Takuzu

T. Verhoeff120

or more equal symbols are horizontally or vertically adjacent, and (Rule 2) in each row
and in each column, the number of zeroes equals the number of ones. The simplification is
that we allow identical rows and columns. The given zeroes and ones cannot be changed
when solving the puzzle, and you may assume that there is a unique solution. Try to solve
the example in Fig. 1 if you have not done this kind of puzzle before.

Puzzles can often be solved just by reasoning, and there is no need for ‘blind’ back-
tracking. Given Rules 1 and 2 for our puzzles, there are two obvious strategies to fill in
what one could call forced bits.

If in three horizontally or vertically adjacent cells two cells have the same 1.
bit b, then the other cell must have the opposite of b, i.e. 1 − b.
If in a row or column half of its cells have bit 2. b, then the remaining cells must
have 1 − b.

The correctness of these strategies follows from the fact that a solution exists. We
call three horizontally or vertically adjacent cells a triplet, and a complete row or column
a line. In pseudocode, these strategies can be expressed as follows.

 1. Triplet strategy: Find a triplet t with one empty cell and a bit b, where b occurs
twice in t, and fill the empty cell with bit 1 − b.
 2. Line strategy: Find a line

2 Reasoning Strategies to Solve Puzzles
The puzzles in this article are simplified Binairos1, consisting of a square grid
with an even number of rows and columns, partly filled with zeroes and ones
(see Fig. 1). The objective is to fill the grid completely with zeroes and ones
such that (Rule 1) nowhere three or more equal symbols are horizontally or
vertically adjacent, and (Rule 2) in each row and in each column, the number
of zeroes equals the number of ones. The simplification is that we allow identical
rows and columns. The given zeroes and ones cannot be changed when solving
the puzzle, and you may assume that there is a unique solution. Try to solve
the example in Fig. 1 if you have not done this kind of puzzle before.

Puzzles can often be solved just by reasoning, and there is no need for
‘blind’ backtracking. Given Rules 1 and 2 for our puzzles, there are two obvious
strategies to fill in what one could call forced bits.

1. If in three horizontally or vertically adjacent cells two cells have the same
bit b, then the other cell must have the opposite of b, i.e. 1 − b.

2. If in a row or column half of its cells have bit b, then the remaining cells
must have 1 − b.

The correctness of these strategies follows from the fact that a solution exists.
We call three horizontally or vertically adjacent cells a triplet, and a complete

row or column a line. In pseudocode, these strategies can be expressed as follows.

1. Triplet strategy: Find a triplet t with one empty cell and a bit b, where b
occurs twice in t, and fill the empty cell with bit 1 − b.

2. Line strategy: Find a line  with at least one empty cell and a bit b, where
b occurs in half of ’s cells, and fill all empty cells of  with bit 1 − b.

Note that such strategies take a puzzle as argument, and return a, possibly
updated, puzzle. We will leave that puzzle parameter implicit for now (think of
it as a global variable; see the next section for details). These strategies are non-
deterministic, and when they do not apply, they leave the puzzle unchanged.
Strategies must have the property that (i) they only change empty cells, and
(ii) they preserve solvability.

If you have applied a strategy and nothing changed, then it does not make
sense to apply it again. But if it did bring some change, then it might be
applicable again. Moreover, if the triplet strategy did not bring any changes,
but subsequent application of the line strategy did, then it would be good to
try the triplet strategy again (see Fig. 2).

This leads to the wish to define strategy combinators such as the following.

3. Fixed-point strategy: Repeatedly apply a given strategy until no further
change occurs. It takes a strategy as parameter.

4. Pair strategy: Apply two given strategies one after the other. It has two
strategy parameters, and can be nested to combine more strategies.

We call these meta-stategies, because they take one or more strategies as param-
eter. If we (as humans) consider the triplet strategy to be simpler to apply than
the line strategy, then we would probably use the following strategy FPFTL.

1A.k.a. binary or Takuzu puzzles; see https://en.wikipedia.org/wiki/Takuzu.

2

 with at least one empty cell and a bit b, where b
occurs in half of

2 Reasoning Strategies to Solve Puzzles
The puzzles in this article are simplified Binairos1, consisting of a square grid
with an even number of rows and columns, partly filled with zeroes and ones
(see Fig. 1). The objective is to fill the grid completely with zeroes and ones
such that (Rule 1) nowhere three or more equal symbols are horizontally or
vertically adjacent, and (Rule 2) in each row and in each column, the number
of zeroes equals the number of ones. The simplification is that we allow identical
rows and columns. The given zeroes and ones cannot be changed when solving
the puzzle, and you may assume that there is a unique solution. Try to solve
the example in Fig. 1 if you have not done this kind of puzzle before.

Puzzles can often be solved just by reasoning, and there is no need for
‘blind’ backtracking. Given Rules 1 and 2 for our puzzles, there are two obvious
strategies to fill in what one could call forced bits.

1. If in three horizontally or vertically adjacent cells two cells have the same
bit b, then the other cell must have the opposite of b, i.e. 1 − b.

2. If in a row or column half of its cells have bit b, then the remaining cells
must have 1 − b.

The correctness of these strategies follows from the fact that a solution exists.
We call three horizontally or vertically adjacent cells a triplet, and a complete

row or column a line. In pseudocode, these strategies can be expressed as follows.

1. Triplet strategy: Find a triplet t with one empty cell and a bit b, where b
occurs twice in t, and fill the empty cell with bit 1 − b.

2. Line strategy: Find a line  with at least one empty cell and a bit b, where
b occurs in half of ’s cells, and fill all empty cells of  with bit 1 − b.

Note that such strategies take a puzzle as argument, and return a, possibly
updated, puzzle. We will leave that puzzle parameter implicit for now (think of
it as a global variable; see the next section for details). These strategies are non-
deterministic, and when they do not apply, they leave the puzzle unchanged.
Strategies must have the property that (i) they only change empty cells, and
(ii) they preserve solvability.

If you have applied a strategy and nothing changed, then it does not make
sense to apply it again. But if it did bring some change, then it might be
applicable again. Moreover, if the triplet strategy did not bring any changes,
but subsequent application of the line strategy did, then it would be good to
try the triplet strategy again (see Fig. 2).

This leads to the wish to define strategy combinators such as the following.

3. Fixed-point strategy: Repeatedly apply a given strategy until no further
change occurs. It takes a strategy as parameter.

4. Pair strategy: Apply two given strategies one after the other. It has two
strategy parameters, and can be nested to combine more strategies.

We call these meta-stategies, because they take one or more strategies as param-
eter. If we (as humans) consider the triplet strategy to be simpler to apply than
the line strategy, then we would probably use the following strategy FPFTL.

1A.k.a. binary or Takuzu puzzles; see https://en.wikipedia.org/wiki/Takuzu.

2

’s cells, and fill all empty cells of

2 Reasoning Strategies to Solve Puzzles
The puzzles in this article are simplified Binairos1, consisting of a square grid
with an even number of rows and columns, partly filled with zeroes and ones
(see Fig. 1). The objective is to fill the grid completely with zeroes and ones
such that (Rule 1) nowhere three or more equal symbols are horizontally or
vertically adjacent, and (Rule 2) in each row and in each column, the number
of zeroes equals the number of ones. The simplification is that we allow identical
rows and columns. The given zeroes and ones cannot be changed when solving
the puzzle, and you may assume that there is a unique solution. Try to solve
the example in Fig. 1 if you have not done this kind of puzzle before.

Puzzles can often be solved just by reasoning, and there is no need for
‘blind’ backtracking. Given Rules 1 and 2 for our puzzles, there are two obvious
strategies to fill in what one could call forced bits.

1. If in three horizontally or vertically adjacent cells two cells have the same
bit b, then the other cell must have the opposite of b, i.e. 1 − b.

2. If in a row or column half of its cells have bit b, then the remaining cells
must have 1 − b.

The correctness of these strategies follows from the fact that a solution exists.
We call three horizontally or vertically adjacent cells a triplet, and a complete

row or column a line. In pseudocode, these strategies can be expressed as follows.

1. Triplet strategy: Find a triplet t with one empty cell and a bit b, where b
occurs twice in t, and fill the empty cell with bit 1 − b.

2. Line strategy: Find a line  with at least one empty cell and a bit b, where
b occurs in half of ’s cells, and fill all empty cells of  with bit 1 − b.

Note that such strategies take a puzzle as argument, and return a, possibly
updated, puzzle. We will leave that puzzle parameter implicit for now (think of
it as a global variable; see the next section for details). These strategies are non-
deterministic, and when they do not apply, they leave the puzzle unchanged.
Strategies must have the property that (i) they only change empty cells, and
(ii) they preserve solvability.

If you have applied a strategy and nothing changed, then it does not make
sense to apply it again. But if it did bring some change, then it might be
applicable again. Moreover, if the triplet strategy did not bring any changes,
but subsequent application of the line strategy did, then it would be good to
try the triplet strategy again (see Fig. 2).

This leads to the wish to define strategy combinators such as the following.

3. Fixed-point strategy: Repeatedly apply a given strategy until no further
change occurs. It takes a strategy as parameter.

4. Pair strategy: Apply two given strategies one after the other. It has two
strategy parameters, and can be nested to combine more strategies.

We call these meta-stategies, because they take one or more strategies as param-
eter. If we (as humans) consider the triplet strategy to be simpler to apply than
the line strategy, then we would probably use the following strategy FPFTL.

1A.k.a. binary or Takuzu puzzles; see https://en.wikipedia.org/wiki/Takuzu.

2

 with bit 1 − b.
Note that such strategies take a puzzle as argument, and return a, possibly updated,

puzzle. We will leave that puzzle parameter implicit for now (think of it as a global vari-
able; see the next section for details). These strategies are nondeterministic, and when
they do not apply, they leave the puzzle unchanged. Strategies must have the property that
(i) they only change empty cells, and (ii) they preserve solvability, i.e., if the puzzle was
solvable before applying the strategy then it is still solvable after applying the strategy.

If you have applied a strategy and nothing changed, then it does not make sense to
apply it again. But if it did bring some change, then it might be applicable again. More-
over, if the triplet strategy did not bring any changes, but subsequent application of the
line strategy did, then it would be good to try the triplet strategy again (see Fig. 2).

This leads to the wish to define strategy combinators such as the following.
 3. Fixed-point strategy: Repeatedly apply a given strategy until no further change
occurs. It takes a strategy as parameter.

0 0 1

1 1
0 0 1
0 1 0

1
1

1 0

Figure 1: The initial state of an 8× 8 Binary Puzzle

2 Reasoning Strategies to Solve Binary Puzzles

Binary puzzles can often be solved just by reasoning, and there is no need for
‘blind’ backtracking. Given Rules 1 and 2 for binary puzzles, there are two
obvious strategies to fill in what one could call forced bits:

1. If in three horizontally or vertically adjacent cells two cells have the same
bit b, then the other cell must have the opposite of b, i.e. 1− b.

2. If in a row or column half of its cells have bit b, then the remaining cells
must have 1− b.

We call three horizontally or vertically adjacent cells a triplet, and a complete
row or column a line. In pseudocode, these strategies are programmed as follows.

1. Triplets strategy: For all triplets t with one empty cell, and for all bits b,
if b occurs twice in t, then fill the empty cell with bit 1− b.

2. Lines strategy: For all lines  with at least one empty cell, and for all
bits b, if b occurs in half of ’s cells, then fill all empty cells with bit 1− b.

Note that such strategies take a Binairo as argument, that we will leave implicit
for now (think of it as a global variable; see the next section for details).

If you have applied a strategy, and nothing changed, then it does not make
sense to apply it again. But if it did lead to at least one change, then it might be
applicable again. Moreover, if the triplets strategy did not lead to any changes,
but subsequent application of the lines strategy does, then it would be good to
try the triplets strategy again (see Fig. 2).

This leads to the wish to combine strategies (as abstract recipes) as follows.

3. Fixed-point strategy: Repeatedly apply a given strategy until no further
changes occurred. It takes a strategy as parameter.

4. Pair strategy: Apply two given strategies one after the other. It has two
strategy parameters, and can be nested.

We call these meta-stategies, because they take one or more strategies as pa-
rameter. If we (as humans) consider the triplets strategy to be simpler to apply
than the lines strategy, then we would probably use the following strategy:

5. FPTL = fixed-point(pair(FPT, lines)) where

2

Fig. 1. Initial state of our 8 × 8 example puzzle.

Look Ma, Backtracking without Recursion 121

 4. Pair strategy: Apply two given strategies one after the other. It has two strategy
parameters, and can be nested to combine more strategies.

We call these meta-stategies, because they take one or more strategies as parameter.
If we (as humans) consider the triplet strategy to be simpler to apply than the line strat-
egy, then we would probably use the following strategy F P F T L.

 5. F P F T L = fixed_point (pair (FT, line)) where
 6. F T = fixed_point (triplet).

Applying the F T and F P F T L strategies to the puzzle in Fig. 1 leads to Fig. 2.
For the example puzzle, we are then stuck. You may already have discovered the fol-

lowing strategy to help out.
 7. Contradiction strategy: Find an empty cell c and a bit b, where putting bit b in
cell c leads to an invalid state after applying the F P F T L strategy, and fill cell
c with bit 1 − b.

The contradiction strategy speculates and looks ahead. It is correct, because by
assumption there exists a solution. You can see it in action in Fig. 3. In fact, fixed_
point (pair (F P F T L, contradiction)) solves our example puzzle.

5. FPFTL = fixed point(pair(FT , line)) where

6. FT = fixed point(triplet)

Applying the FT and FPFTL strategies to the puzzle in Fig. 1 leads to Fig. 2.

0 1 0 1

1 0 1 1 0
0 0 1 0 1 0 1
0 1 0
1 1

0 1
1 0

0 1 0 1
0

1 0 1 1 0
0 0 1 0 1 1 0 1
0 0 1 0
1 1

0 1
1 0

Figure 2: State after applying the FT strategy to Fig. 1 (left), and after the
FPFTL strategy (right), where the line strategy yielded the blue (underlined) 1

For the example puzzle, we are then stuck. You may already have discovered
the following strategy to help out.

7. Contradiction strategy: Find an empty cell c and a bit b, where putting
bit b in cell c leads to an invalid state after applying the FPFTL strategy,
and fill cell c with bit 1 − b.

The contradiction strategy speculates and looks ahead. It is correct, because by
assumption there exists a solution. You can see it in action in Fig. 3. In fact,
fixed point(pair(FPFTL, contradiction)) solves our example puzzle.

0 1 0 1
0̃ 0
1 0 1 1 0
0 0 1 0 1 1 0 1
0 0 1 0
1 1
1 0 1
1 1 0

0 1 0 0 1 1 0 1
1̃ 1 0 1 0 0 1 0
1 0̃ 1 0 0 1 1 0
0 0 1 0 1 1 0 1
0 1 0 1 1 0 1 0
1 0 0̃ 1 0 1 0 1
0 1 1 0 1 0 0 1
1 0 1 1 0 0̃ 1 0

Figure 3: When trying 0 in the red cell (with tilde), and applying FPFTL, the
line strategy yields the 1s in the yellow cells, violating Rule 1 (left); therefore the
red cell must contain 1; applying fixed point(pair(FPFTL, contradiction)), we
get the shown solution (right), where the colors encode the responsible strategy:
yellow–triplet, blue(underline)–line, red(tilde)–contradiction.

Observe that the pair of triplet and line strategies together can be viewed as
special case of the following direct contradiction strategy.

8. Direct contradiction strategy: Find an empty cell c and bit b, where
putting bit b in cell c directly leads to an invalid state, and fill cell c
with 1 − b.

3

Fig. 2. State after applying the FT strategy to Fig. 1 (left), and after the FPFTL strategy (right),
where the line strategy yielded the blue (underlined) 1.

5. FPFTL = fixed point(pair(FT , line)) where

6. FT = fixed point(triplet)

Applying the FT and FPFTL strategies to the puzzle in Fig. 1 leads to Fig. 2.

0 1 0 1

1 0 1 1 0
0 0 1 0 1 0 1
0 1 0
1 1

0 1
1 0

0 1 0 1
0

1 0 1 1 0
0 0 1 0 1 1 0 1
0 0 1 0
1 1

0 1
1 0

Figure 2: State after applying the FT strategy to Fig. 1 (left), and after the
FPFTL strategy (right), where the line strategy yielded the blue (underlined) 1

For the example puzzle, we are then stuck. You may already have discovered
the following strategy to help out.

7. Contradiction strategy: Find an empty cell c and a bit b, where putting
bit b in cell c leads to an invalid state after applying the FPFTL strategy,
and fill cell c with bit 1 − b.

The contradiction strategy speculates and looks ahead. It is correct, because by
assumption there exists a solution. You can see it in action in Fig. 3. In fact,
fixed point(pair(FPFTL, contradiction)) solves our example puzzle.

0 1 0 1
0̃ 0
1 0 1 1 0
0 0 1 0 1 1 0 1
0 0 1 0
1 1
1 0 1
1 1 0

0 1 0 0 1 1 0 1
1̃ 1 0 1 0 0 1 0
1 0̃ 1 0 0 1 1 0
0 0 1 0 1 1 0 1
0 1 0 1 1 0 1 0
1 0 0̃ 1 0 1 0 1
0 1 1 0 1 0 0 1
1 0 1 1 0 0̃ 1 0

Figure 3: When trying 0 in the red cell (with tilde), and applying FPFTL, the
line strategy yields the 1s in the yellow cells, violating Rule 1 (left); therefore the
red cell must contain 1; applying fixed point(pair(FPFTL, contradiction)), we
get the shown solution (right), where the colors encode the responsible strategy:
yellow–triplet, blue(underline)–line, red(tilde)–contradiction.

Observe that the pair of triplet and line strategies together can be viewed as
special case of the following direct contradiction strategy.

8. Direct contradiction strategy: Find an empty cell c and bit b, where
putting bit b in cell c directly leads to an invalid state, and fill cell c
with 1 − b.

3

Fig. 3. When trying 0 in the red cell (with tilde), and applying FPFTL, the line strategy
yields the 1s in the yellow cells, violating Rule 1 (left); therefore the red cell must contain 1;
applying fixed_point(pair(FPFTL, contradiction)), we get the shown solution (right), where
the colors encode the responsible strategy: yellow–triplet, blue(underline)–line, red(tilde)–
contradiction.

T. Verhoeff122

Observe that the pair of triplet and line strategies together can be viewed as special
case of the following direct contradiction strategy.

 8. Direct contradiction strategy: Find an empty cell c and bit b, where putting bit
b in cell c directly leads to an invalid state, and fill cell c with 1 − b.

Note that this may be less efficient, but we now do have
 9. F P F T L = fixed_point (direct_contradiction).

To avoid code duplication (DRY = Don’t Repeat Yourself), let’s see if we can unify
the code for these two contradiction strategies by generalization via a strategy parameter,
making it a meta-strategy.

 10. General contradiction strategy: Find an empty cell c and a bit b, where putting
bit b in cell c leads to an invalid state after applying a given strategy, and then
fill cell c with 1 − b.

Its usefulness depends on how good the supplied strategy is at finding forced bits.
But even when the supplied strategy does nothing, the general contradiction strategy
is correct. Let’s define the empty strategy as doing nothing (applying the identity
function).

 11. Empty strategy: Do nothing.
Then we see that both contradiction and direct contradiction are indeed special cases

of general contradiction.
 12. contradiction = general_contradiction (F P F T L).
 13. direct_contradiction = general_contradiction (empty).

In fact, now we no longer need F P F T L, because it can be expressed in terms of the
general contradiction strategy via 9 and 13, and the contradiction strategy now becomes
a double application of general contradiction:

 14. F P F T L = fixed_point (general_contradiction (empty)).
 15. contradiction = general_contradiction (fixed_point (general_contradiction (emp-
ty))).

2.1. Self Application

Then the idea occurred to me that instead of F P F T L in the contradiction strategy, we
should use the best strategy we can think of to find a sequence of forced bits leading to a
contradiction. So, what about supplying itself as parameter? Like this:

 16. general_contradiction (general_contradiction (general_contradiction (...))).
Of course, we cannot define it with those dots. But we can define a variant H of the

general contradiction strategy that expects a hyper-strategy h as parameter, viz. a strat-
egy that takes a hyper-strategy (not necessarily itself) as parameter.

 17. Hyper-contradiction (hyper-strategy h): Find an empty cell c and a bit b, where
putting bit b in cell c leads to an invalid state after applying strategy h (h), and
fill cell c with 1 − b. N.B. h could ignore its argument!

Look Ma, Backtracking without Recursion 123

Therefore, the hyper-contradiction strategy is in fact also a hyper-strategy, and can
be passed as parameter to itself. Now we can properly define the strategy in 16 as H (H).
Note that this is a regular strategy (not meta or hyper).

It works (thanks to the two key properties of strategies), but it is not guaranteed to
solve puzzles by itself. It may have to be repeated, which we can do by applying the
fixed-point strategy. But if that is a better strategy, then we want to use that as param-
eter in the hyper-contradiction strategy. This can be accomplished by hyper-strategy F H
defined by

 18. F H (hyper_strategy) = fixed_point (hyper_contradiction (hyper_strategy))))
and applying it to itself, which basically gives us backtracking!

 19. backtracking = F H (F H).
If there exists a unique solution (which is assumed), anything other than the cor-

rect bit in a cell must lead to a contradiction. And it terminates because strategies only
fill empty cells. Note that if the puzzle has multiple solutions, then our backtracking
strategy won’t find any of them, because then there exists at least one cell where both 0
and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self applica-
tion). Of course, there are some details to take care of to make all of this work in a real
(strongly typed) programming language. For that, see the next section.

3. Design Details, Java Code, and Refinements

One could try to implement my approach to backtracking in a functional programming
language, as sketched above. But this can lead to a typing problem because of the self ap-
plication. I found it a nice challenge to code it in the object-oriented language Java (which
we use in our education, and which used to be permitted at the International Olympiad in
Informatics). To keep the code easily understandable for non-Java programmers, I stick
to a minimal subset, avoiding interfaces and generic type parameters. Also see (Verhoeff,
2018, §6) for how to type and define functions that can be self-applied in Java.

First, I look at some design details in §3.1, still using a functional approach. Note
that these are mathematical functions, and not programming-language functions, that is,
without side effects operating on (immutable) values. Next, I present an overview of the
Java source code, and finally, I discuss some refinements (that could serve as exercises).

3.1. Design Details

Here, I will elaborate on some of my design decisions to obtain an object-oriented (O O)
program from the functional description in Section 2. The focus is on implementing
strategies. Recall that a strategy is a function from the domain of puzzles, denoted by

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 , to itself, i.e., they have type

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 =

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 →

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

. In the functional setting there is no mutable
data, only values. So, in O O terms, a strategy returns a fresh object, copied from its

T. Verhoeff124

argument and possibly altered. In the O O world, this is frowned upon, because the up-
dates to the puzzle are quite local. So, a mutable type of puzzles is preferred, to avoid
copying lots of data that is unchanged. (In functional programming this is frowned
upon, and one would use lazy updaters applied to the puzzle, but that is outside the
scope of this article. See the Python code in Verhoeff (2021) for the idea.)

Before dealing with the puzzle parameter of a strategy, let’s also look at meta-
strategies. These have type

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 =

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 →

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

. In a functional setting, this is a curried func-
tion of two arguments, viz. first a strategy and then a puzzle yielding a puzzle:

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 =

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 →

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 →

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

, where the latter is to be read parenthesized as

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 → (

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 →

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

). Thus, if
m ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

, s ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 , and p ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

, we have m (s) ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 and m (s) (p) ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

. Uncurried, the latter
would be written as m (s, p). The call m (s) is called a partial application of m, be-
cause it lacks the second argument, which is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.
T ● ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 – triplet strategy (see §2).
L ● ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 – line strategy (see §2).
F ● ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 – fixed-point meta-strategy, satisfying

F (s) (p) = p if s (p) = p else F (s) (s (p)).

This is recursive, but in a Java program, this would be done via a do-while loop,
not needing a stack. It terminates because every update that strategy s makes to p chang-
es empty cells only.

P ● ∈ (

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 ×

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

) →

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 – pair meta-strategy, taking a pair of strategies as argument, such
that P (s1, s2) (p) = s2 (s1 (p)); this corresponds to function composition: P (s1, s2) =
s2 ◦ s1.
E ● ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 – empty strategy, with E (p) = p for all p ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

.
G ● ∈

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 – general contradiction meta-strategy (see §2).
H ● ∈

curried function of two arguments, viz. first a strategy and then a puzzle yielding
a puzzle: M = S → P → P, where the latter is to be read parenthesized as
S → (P → P). Thus, if m ∈ M, s ∈ S, and p ∈ P, we have m(s) ∈ S and
m(s)(p) ∈ P. Uncurried, the latter would be written as m(s, p). The call m(s)
is called a partial application of m, because it lacks the second argument, which
is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.

• T ∈ S – triplet strategy (see §2)

• L ∈ S – line strategy (see §2)

• F ∈ M – fixed-point meta-strategy, satisfying

F (s)(p) = p if s(p) = p else F (s)(s(p))

This is recursive, but in a Java program, this would be done via a do-while
loop, not needing a stack. It terminates because every update that strat-
egy s makes to p changes empty cells only.

• P ∈ (S × S) → S – pair meta-strategy, taking a pair of strategies as
argument, such that P (s1, s2)(p) = s2(s1(p)); this corresponds to function
composition: P (s1, s2) = s2 ◦ s1.

• E ∈ S – empty strategy, with E(p) = p for all p ∈ P.

• G ∈ M – general contradiction meta-strategy (see §2)

• H ∈ H → S, where H is the type of hyper-strategies (see §2), i.e., we have
H = H → S (this is an infinite type that most functional languages don’t
like, but that we can get to work in Java).

Unfortunately, in OO programming, currying and partial application don’t come
for free. Suppose we have a function f ∈ A × B → C with curried version
f  ∈ A → B → C. In that case, f (a) ∈ B → C is a partial application
of f , and f (a)(b) = f(a, b). How can this be done in Java, where there are no
separate functions? Instead, we have a method m — static or not — in some
class C:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

To use this function, create an instance of its class, and call the method:
6 C obj = new C();
7 System.out.println(obj.m(1, 3)); // 4
8 System.out.println(obj.m(2, 3)); // 7

To define a function partially applied only to its first argument, define a new
class as carrier for such partially applied functions:

6

 →

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 – hyper-contradiction hyper-strategy, where we have

curried function of two arguments, viz. first a strategy and then a puzzle yielding
a puzzle: M = S → P → P, where the latter is to be read parenthesized as
S → (P → P). Thus, if m ∈ M, s ∈ S, and p ∈ P, we have m(s) ∈ S and
m(s)(p) ∈ P. Uncurried, the latter would be written as m(s, p). The call m(s)
is called a partial application of m, because it lacks the second argument, which
is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.

• T ∈ S – triplet strategy (see §2)

• L ∈ S – line strategy (see §2)

• F ∈ M – fixed-point meta-strategy, satisfying

F (s)(p) = p if s(p) = p else F (s)(s(p))

This is recursive, but in a Java program, this would be done via a do-while
loop, not needing a stack. It terminates because every update that strat-
egy s makes to p changes empty cells only.

• P ∈ (S × S) → S – pair meta-strategy, taking a pair of strategies as
argument, such that P (s1, s2)(p) = s2(s1(p)); this corresponds to function
composition: P (s1, s2) = s2 ◦ s1.

• E ∈ S – empty strategy, with E(p) = p for all p ∈ P.

• G ∈ M – general contradiction meta-strategy (see §2)

• H ∈ H → S, where H is the type of hyper-strategies (see §2), i.e., we have
H = H → S (this is an infinite type that most functional languages don’t
like, but that we can get to work in Java).

Unfortunately, in OO programming, currying and partial application don’t come
for free. Suppose we have a function f ∈ A × B → C with curried version
f  ∈ A → B → C. In that case, f (a) ∈ B → C is a partial application
of f , and f (a)(b) = f(a, b). How can this be done in Java, where there are no
separate functions? Instead, we have a method m — static or not — in some
class C:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

To use this function, create an instance of its class, and call the method:
6 C obj = new C();
7 System.out.println(obj.m(1, 3)); // 4
8 System.out.println(obj.m(2, 3)); // 7

To define a function partially applied only to its first argument, define a new
class as carrier for such partially applied functions:

6

 =

curried function of two arguments, viz. first a strategy and then a puzzle yielding
a puzzle: M = S → P → P, where the latter is to be read parenthesized as
S → (P → P). Thus, if m ∈ M, s ∈ S, and p ∈ P, we have m(s) ∈ S and
m(s)(p) ∈ P. Uncurried, the latter would be written as m(s, p). The call m(s)
is called a partial application of m, because it lacks the second argument, which
is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.

• T ∈ S – triplet strategy (see §2)

• L ∈ S – line strategy (see §2)

• F ∈ M – fixed-point meta-strategy, satisfying

F (s)(p) = p if s(p) = p else F (s)(s(p))

This is recursive, but in a Java program, this would be done via a do-while
loop, not needing a stack. It terminates because every update that strat-
egy s makes to p changes empty cells only.

• P ∈ (S × S) → S – pair meta-strategy, taking a pair of strategies as
argument, such that P (s1, s2)(p) = s2(s1(p)); this corresponds to function
composition: P (s1, s2) = s2 ◦ s1.

• E ∈ S – empty strategy, with E(p) = p for all p ∈ P.

• G ∈ M – general contradiction meta-strategy (see §2)

• H ∈ H → S, where H is the type of hyper-strategies (see §2), i.e., we have
H = H → S (this is an infinite type that most functional languages don’t
like, but that we can get to work in Java).

Unfortunately, in OO programming, currying and partial application don’t come
for free. Suppose we have a function f ∈ A × B → C with curried version
f  ∈ A → B → C. In that case, f (a) ∈ B → C is a partial application
of f , and f (a)(b) = f(a, b). How can this be done in Java, where there are no
separate functions? Instead, we have a method m — static or not — in some
class C:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

To use this function, create an instance of its class, and call the method:
6 C obj = new C();
7 System.out.println(obj.m(1, 3)); // 4
8 System.out.println(obj.m(2, 3)); // 7

To define a function partially applied only to its first argument, define a new
class as carrier for such partially applied functions:

6

 →

that is a better strategy, then we want to use that as parameter in the hyper-
contradiction strategy. This can be accomplished by hyper-strategy FPHC
defined by

18. FPHC (hyper strategy) = fixed point(hyper contradiction(hyper strategy))))

and applying it to itself, which basically gives us backtracking!

19. backtracking = FPHC (FPHC)

If there exists a unique solution (which is assumed), anything other than the
correct bit in a cell must lead to a contradiction. And it terminates because
strategies only fill empty cells. Note that if the puzzle has multiple solutions,
then our backtracking won’t find any of them, because then there exists at least
one cell where both 0 and 1 are valid, and there won’t be a contradiction.

Observe that these function definitions are not recursive (though there is self
application). Of course, there are some details to take care of to make all of this
work in a real (strongly typed) programming language. For that, see the next
section.

3 Design Details, Java Code, and Refinements
One could try to implement my approach to backtracking in a functional pro-
gramming language, as sketched above. But this can lead to a typing problem
because of the self application. I found it a nice challenge to code it in the
object-oriented language Java (which we use in our education, and which is per-
mitted at the International Olympiad in Informatics). To keep the code easily
understandable for non-Java programmers, I stick to a minimal subset, avoiding
interfaces and generic type parameters. Also see (Verhoeff, 2018, §6) for how to
type and define functions that can be self applied.

First, I look at some design details in §3.1, still using a functional approach.
Note that these are mathematical functions, and not programming-language
functions, that is, without side effects operating on (immutable) values. Next,
I present an overview of the Java source code, and finally, I discuss some refine-
ments (that could serve as exercises).

3.1 Design details
Here, I will elaborate on some of my design decisions to obtain an object-oriented
(OO) program from the functional description in Section 2. The focus is on
implementing strategies. Recall that a strategy is a function from the domain
of puzzles, denoted by P, to itself, i.e., they have type S = P → P. In the
functional setting there is no mutable data, only values. So, in OO terms, a
strategy returns a fresh object, copied from its argument and possibly altered.
In the OO world, this is frowned upon, because the updates to the puzzle are
quite local. So, a mutable type of puzzles is preferred, to avoid copying lots of
data that is unchanged. (In functional programming this is frowned upon, and
one would use lazy updaters applied to the puzzle, but that is outside the scope
of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at
meta-strategies. These have type M = S → S. In a functional setting, this is a

5

 (this
is an infinite type that most functional languages don’t like, but that we can get to
work in Java).

Unfortunately, in OO programming, currying and partial application don’t come for
free. Suppose we have a function f ∈ A × B → C with curried version f ' ∈ A → B → C.
In that case,

T. Verhoeff124

argument and possibly altered. In the O O world, this is frowned upon, because the up-
dates to the puzzle are quite local. So, a mutable type of puzzles is preferred, to avoid
copying lots of data that is unchanged. (In functional programming this is frowned
upon, and one would use lazy updaters applied to the puzzle, but that is outside the
scope of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at meta-
strategies. These have type = → . In a functional setting, this is a curried func-
tion of two arguments, viz. first a strategy and then a puzzle yielding a puzzle: =

 → → , where the latter is to be read parenthesized as → (→). Thus, if
m ∈ , s ∈ , and p ∈ , we have m (s) ∈ and m (s) (p) ∈ . Uncurried, the latter
would be written as m (s, p). The call m (s) is called a partial application of m, be-
cause it lacks the second argument, which is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.
T ● ∈ – triplet strategy (see §2).
L ● ∈ – line strategy (see §2).
F ● ∈ – fixed-point meta-strategy, satisfying

F (s) (p) = p if s (p) = p else F (s) (s (p)).

This is recursive, but in a Java program, this would be done via a do-while loop,
not needing a stack. It terminates because every update that strategy s makes to p chang-
es empty cells only.

P ● ∈ (×) → – pair meta-strategy, taking a pair of strategies as argument, such
that P (s1, s2) (p) = s2 (s1 (p)); this corresponds to function composition: P (s1, s2) =
s2 ◦ s1.
E ● ∈ – empty strategy, with E (p) = p for all p ∈ .
G ● ∈ – general contradiction meta-strategy (see §2).
H ● ∈

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 → , where

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 is the type of hyper-strategies – general hyper-contradiction
hyper-strategy (see §2), i.e., we have

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 =

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 → (this is an infinite type that most
functional languages don’t like, but that we can get to work in Java).

Unfortunately, in OO programming, currying and partial application don’t come for
free. Suppose we have a function f ∈ A × B → C with curried version f ' ∈ A → B → C.
In that case, f ‘(a) ∈ B → C is a partial application of f, and f ‘(a) (b) = f (a, b). How can
this be done in Java, where there are no separate functions? Instead, we have a method
m – static or not – in some class C:

To use this function, create an instance of its class, and call the method:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

(a) ∈ B → C is a partial application of f, and

T. Verhoeff124

argument and possibly altered. In the O O world, this is frowned upon, because the up-
dates to the puzzle are quite local. So, a mutable type of puzzles is preferred, to avoid
copying lots of data that is unchanged. (In functional programming this is frowned
upon, and one would use lazy updaters applied to the puzzle, but that is outside the
scope of this article.)

Before dealing with the puzzle parameter of a strategy, let’s also look at meta-
strategies. These have type = → . In a functional setting, this is a curried func-
tion of two arguments, viz. first a strategy and then a puzzle yielding a puzzle: =

 → → , where the latter is to be read parenthesized as → (→). Thus, if
m ∈ , s ∈ , and p ∈ , we have m (s) ∈ and m (s) (p) ∈ . Uncurried, the latter
would be written as m (s, p). The call m (s) is called a partial application of m, be-
cause it lacks the second argument, which is needed to start the evaluation.

Let’s introduce shorter names for the various strategies introduced in §2.
T ● ∈ – triplet strategy (see §2).
L ● ∈ – line strategy (see §2).
F ● ∈ – fixed-point meta-strategy, satisfying

F (s) (p) = p if s (p) = p else F (s) (s (p)).

This is recursive, but in a Java program, this would be done via a do-while loop,
not needing a stack. It terminates because every update that strategy s makes to p chang-
es empty cells only.

P ● ∈ (×) → – pair meta-strategy, taking a pair of strategies as argument, such
that P (s1, s2) (p) = s2 (s1 (p)); this corresponds to function composition: P (s1, s2) =
s2 ◦ s1.
E ● ∈ – empty strategy, with E (p) = p for all p ∈ .
G ● ∈ – general contradiction meta-strategy (see §2).
H ● ∈

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 → , where

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 is the type of hyper-strategies – general hyper-contradiction
hyper-strategy (see §2), i.e., we have

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 =

do-while

class C {
int m(int x, int y) {

return x * x + y;
}

}

C obj = new C();
System.out.println(obj.m(1, 3)); // 4
System.out.println(obj.m(2, 3)); // 7

 → (this is an infinite type that most
functional languages don’t like, but that we can get to work in Java).

Unfortunately, in OO programming, currying and partial application don’t come for
free. Suppose we have a function f ∈ A × B → C with curried version f ' ∈ A → B → C.
In that case, f ‘(a) ∈ B → C is a partial application of f, and f ‘(a) (b) = f (a, b). How can
this be done in Java, where there are no separate functions? Instead, we have a method
m – static or not – in some class C:

To use this function, create an instance of its class, and call the method:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

(a) (b) = f (a, b). How can
this be done in Java, where there are no separate functions? Instead, we have a method
m – static or not – in some class C:

To use this function, create an instance of its class, and call the method:

1 class C {
2 int m(int x, int y) {
3 return x * x + y;
4 }
5 }

Look Ma, Backtracking without Recursion 125

To define a function partially applied only to its first argument, define a new class as
carrier for such partially applied functions:

Finally, we create objects from this class to get partially applied versions of m:

You could consider this an O O design pattern for partial function applica-
tion. Unfortunately, it is quite bureaucratic and verbose for such a simple idea.
 You can see a resemblance to the Command design pattern here. That pattern is typically
used to capture all parameters, and just delay the call. The only reason to delay a call in
an O O language is because there is a side effect that must be properly synchronized with
other actions. In a functional language, there are no side effects in function calls, and
because of lazy (‘on-demand’) evaluation, you just call the function right away, relying
on the compiler and runtime system to decide whether its execution is really needed.

When defining a function in an O O language, client code can pass the arguments to
a method in several ways:

Via parameters of the method (at time of the call). ●
Via instance variables in the method’s object (in advance of the call), with these ●
variants:

6 C obj = new C();
7 System.out.println(obj.m(1, 3)); // 4
8 System.out.println(obj.m(2, 3)); // 7

9 class PartialCm {
10 private C obj; // ’receiver’
11 private int x; // first argument
12

13 PartialCm(C obj, int x) {
14 this.obj = obj;
15 this.x = x;
 // don’t call obj.m, but store x (’lazy’)
16 }
17

18 int apply(int y) {
19 return obj.m(x, y); // call with both arguments
20 }
21 }

22 // create partial applications
23 PartialCm m_1 = new PartialCm(obj, 1);
24 PartialCm m_2 = new PartialCm(obj, 2);
25 // apply them
26 System.out.println(m_1.apply(3)); // 4
27 System.out.println(m_2.apply(3)); // 7

T. Verhoeff126

via one or more, possibly parameterized, ◦ constructors (only once);
via one or more, possibly parameterized, ◦ setter methods;
via ◦ direct access to the (non-private) instance variables.

We need to decide how to handle the parameters of (meta-)strategies.
We opt for a puzzle class with mutable objects, and all the strategies will work on the

same object. Because of mutability we now also need to worry about reverting changes
made to the puzzle state in contradiction strategies. We choose to pass the puzzle param-
eter via a static instance variable, set once by the client code. That way we also avoid
the need for defining constructors in subclasses that are not meta-strategies.

Concerning strategy parameter(s) of meta-strategies, we did the following. Since we
cannot pass pure functions, we pass an object which the intended function as instance
method. Also see Verhoeff (2012) on passing functions as arguments in Java.

For the fixed-point and pair strategies, we pass them via their constructor and store ●
them in instance variables. Polymorphism allows these strategies to abstract from
the precise nature of their strategy parameters.
For the contradiction strategies, we use instance variables set directly by the client ●
code. In Section 4, you can see how this could have been avoided.

3.2. Java Code

The Java source code demonstrating that the approach to backtracking sketched in Sec-
tion 2 really works is available in Verhoeff (2021). I have attempted to keep the code as
simple as possible. To do so, I have sacrificed some good O O programming habits. For
instance, I have omitted access modifiers (public and private) wherever possible.
This makes instance variables non-encapsulated, and hence we don’t need setters and
getters.

First, an overview of the classes, focusing only on the essentials.
Puzzle ● – a mutable puzzle with a square grid of Cells; all cells are also available
for easy traversal in a single Group (for the contradiction strategies), and via lists
of all Triplets and all Lines (for the corresponding strategies); boolean methods
isValid (to check for rule violations) and isSolved.
Cell ● – a mutable cell with its state, and some global constants.
Group ● – a list of Cells; generalizes Triplet and Line, i.e., it has common code
for

constructing a group from a rectangular block in a puzzle’s grid ◦
frequency counting of cell states (for validity check and for strategies) ◦
bulk filling of empty cells (for triplet and line strategies) ◦

Subclasses:
Triplet ◦ and Line – implement isValid (for Puzzle.isValid and the
contradiction strategies)

Strategy ● – abstract base class for strategies; carrier of the method apply that
applies the strategy to the static puzzle injected by the client; apply must be

Look Ma, Backtracking without Recursion 127

an instance method to allow meta-strategies, such as the pair strategy, to operate on
arbitrary strategies; see below for parameters and returned value of apply.
Subclasses:

TripletStrategy ◦ and LineStrategy – to fill in a forced bit based on the
rules for validity of Triplet and Line
FixedPointStrategy ◦ – to repeat given strategy until no change; the strat-
egy to repeat is injected via the constructor
PairStrategy ◦ – to apply two strategies after each other; these strategies are
injected via the constructor
Not present: ◦ ContradictionStrategy – this is done in Tests via Gener-
alContradictionStrategy
EmptyStrategy ◦ – to do nothing
DirectContradictionStrategy ◦ – special case of the general contradic-
tion strategy using the empty strategy as helper; no longer needed
GeneralContradictionStrategy ◦ – to look for a contradiction after ap-
plying a given strategy; the strategy to help find a contradiction is set directly
by the client code; also used to define the hyper-contradiction hyper-strate-
gy
Not present: ◦ HyperContradictionStrategy – is already offered by Gen-
eralContradictionStrategy, because the strategy parameter strat
passed as instance variable, can be a hyper-strategy (which also has type
Strategy); self application cannot work via the constructor; client code sets
it directly; this needs to be done only once, since all applications of the hy-
per-contradiction strategy will have the same actual strategy parameter (viz.
itself)

Command ● – abstract base class for commands that modify the puzzle’s state; sup-
ports reverting an executed command; uses the Command design pattern.
Subclasses:

SetStateCommand ◦ – command to set and revert state of given cell
CompoundCommand ◦ – a list of commands executed in sequence; uses the
Composite design pattern; in traditional recursive backtracking, the old cell
state is stored in a local variable of the recursive invocation instead of a com-
mand

Logging ● – a utility class with static methods to do logging.
Tests ● – class with main method to run some tests.
LookMa ● – class with main method to run and time self-applied strategies.

There is one more thing worth discussing here, and that is how the method Strat-
egy.apply() evolved as we added strategies.

 1. void apply() – suffices for triplet, line, pair, and empty strategies.
 2. boolean apply() returning whether puzzle was changed – needed for fixed-
point strategy (to avoid copying the old state and comparing it); other strategies
ignore the result.

T. Verhoeff128

 3. int apply() returning number of changes – useful for logging; fixed-point
strategy compares result to 0; other strategies ignore the result.
 4. Command apply() returning all applied puzzle changes, that can be reverted;
needed for (general) contradiction strategy; the fixed-point strategy uses the
command’s size; other strategies ignore the result .
 5. Command apply(int level) – useful to restrict self-nesting depth and to do
indented logging; this is in the current code base.
 6. instance variable untilFirstChange – (default value true) added later to
control whether strategies stop at the first change (in an earlier version, strate-
gies would complete one sweep, possibly accumulating multiple changes; that
behavior can be obtained by setting untilFirstChange to false); the current
behavior is useful when you want to give a single hint; repeated application must
now be obtained through the fixed-point strategy.

3.3. Refinements

There are many ways in which this approach can be improved. I present some sugges-
tions as exercises.

The pair strategy can be generalized to the ● compound strategy, which operates on
a list of strategies. Implement it using the Composite design pattern, where one can
dynamically add strategies at run-time to an initially empty strategy. The empty
compound strategy can now be used instead of the empty strategy.
The triplet/line strategies, iterate over the triplets/lines and then over that group to ●
fill empty cells as applicable. Instead, iterate over the grid’s empty cells, and for
each cell iterate over its triplets/lines, to fill the empty cells as applicable. For this,
each cell needs to know in what triplets and lines it occurs. (This also turns out to
be useful for other refinements.)
Typically, one uses only the line strategy (instead of ● F P F T L) in the contradiction
strategy. In fact, contradiction often only applies the line strategy to the two lines
that intersect at the empty cell being considered. For that, it would help if each cell
would know in what lines it occurs.
The presented backtracking strategy performs badly. If it tries bit 0 and this is cor- ●
rect, then it will find a solution, which it ignores because there is no contradiction.
Then it will try bit 1, which of course leads to a contradiction (because there is only
one solution). And only then will it conclude that there must be a 0 in the tried cell.
When the example puzzle in Fig. 1 is solved by the self-applied fixed-point hyper-
contradiction hyper-strategy, it finds 33 554 431 solutions along the way.
We can remedy this by reporting solutions early, e.g., by throwing an exception in ●
SetStateCommand. Then we have a more traditional backtracking algorithm. It
would also help to report contradictions early, again by throwing an(other) excep-
tion.
Improve performance further, by maintaining an instance variable in ● Group with
the frequency counts of the group’s cell states, to avoid their repeated re-compu-

Look Ma, Backtracking without Recursion 129

tation. For that, each cell needs to know in which groups it occurs, so that when
it changes state, all (and only) the relevant counts can be updated. Instead of the
counts, you could maintain a list of cells per state, to make it easy to traverse cells
of a particular state in that group.
To simplify experimentation with strategies, define a Domain-Specific Language ●
(DSL) to construct strategies. For example, in the functional notation of §3.1, the
strategy expression F (P (F (P (F (T), L)) C)) is not so complicated, but in the
Java code, it becomes a multi-statement code fragment. I would prefer to write an
even shorter expression like ((T *; L)*; C)* and have this interpreted or expanded
automatically.

4. Object-Oriented Programming is Hard

Object-oriented programming (OOP) offers various powerful language features, but
these need to be used with care. In this section, I will boil down my approach to the bare
essence, thereby pinpointing one of the pains of OOP.

Edsger Dijkstra (1968) fulminated against the goto statement, because it made
reasoning about (the correctness of) programs unnecessarily hard (look up: ‘spaghetti
code’). Structured programming did away with the goto statement, by restricting the
flow of control to language constructs with unique entry and exit points (e.g., if-else,
for, while). A next step in the evolution of programming languages incorporated pro-
cedural abstraction, where one can introduce named parameterized abbreviations for
groups of statements, a.k.a. functions. And then came data abstraction, where one can
introduce named parameterized (generic) type abbreviations for groups of variables and
related operations, a.k.a. classes. Programming with such classes is often referred to as
object-oriented programming. Dijkstra (1989) considered OOP “an exceptionally bad
idea which could only have originated in California”. Here is an example to show why.
Consider the following class.

Let me talk you through the code, and in the meantime you can try to see the con-
nection to backtracking via self application. The class Selfish has no instance vari-
ables and a single instance method f, that takes an object of type Selfish as parameter.
Note that the Java compiler compiles this, even though it is a cyclic type definition.
Moreover, note that the compile-time type of parameter x is Selfish. Thanks to the

28 class Selfish {
29 void f(Selfish x) {
30 System.out.println(″Working ...″);
31 x.f(x);
 // Not iterative/recursive, but self-applicative
32 System.out.println(″... and done!″);
33 }
34 }

T. Verhoeff130

support of polymorphism, however, the actual run-time type of the argument supplied
to f can be any subclass of Selfish. Therefore, it is unclear (at compile-time) which
f-functionality is invoked on line 31. This is worse than a goto statement, because with
a goto statement, its control destination is known at compile-time. But with polymor-
phism, the control destination depends on the run-time circumstances (and could even
depend on external input).

Here is a subclass of Selfish:

Class Innocent overrides the behavior of f. Now consider the following objects
and calls of f (see DemoSelfish.java in Verhoeff (2021)). Can you predict the execu-
tion result?

No loop, no (static) recursion, but still a disaster happens. And that in such a small
piece of code. Thanks to dynamic (re)configuration. Spaghetti code is bad, but goto
statements are at least static. This example demonstrates something far worse: dynamic
spaghetti. It makes for a great job interview question. Here, I rest my case.

5. Conclusion

The title of this article refers to the meme “Look ma, no hands”2, said by kids proudly
showing off to their mom that they can ride a bike without hands on the handlebars
(it is also deployed in various jokes). That also captured my feeling when I discovered
the approach to backtracking presented here.

I demonstrated that the power of self application can be discovered quite natu-
rally in the context of what is traditionally called backtracking, e.g. when solving
combinatorial puzzles. It gives rise to programs that do not employ static recursion,

2 https://wordhistories.net/2020/04/14/look-no-hands/

35 class Innocent extends Selfish {
36 @Override
37 void f(Selfish x) {
38 System.out.println(″I’m innocent!″);
39 }
40 }

41 Selfish omega = new Selfish();
42 Selfish innocent = new Innocent();
43

44 innocent.f(innocent);
45 innocent.f(omega);
46 omega.f(innocent);
47 omega.f(omega);

Look Ma, Backtracking without Recursion 131

where the body of function f contains function calls that can be traced statically (i.e.,
at compile time) to a call of f itself, but rather that employ a form of dynamic recur-
sion. In the latter form, the traditional recursive calls are generalized (abstracted) to
an additional function parameter, say g, of f (in OO, g will be a method of a parameter
object). So, when one reasons about the program text of f, one does not know what
the actual parameter g will be. Client code can later decide what function to provide
for g in the call of f. You obtain recursion when calling f with itself as actual param-
eter for g. It is now also clear that one needs to reason about such programs in terms
of contracts, that specify the pre-and post-conditions (assumptions and effects) of
the functions f and g. Contractual reasoning is also the only way to get to grips with
dynamic spaghetti.

To avoid misunderstandings, I mention two caveats.

I am not claiming that the approach to backtracking in this article is to be preferred. ●
It is purely meant as an interesting and possibly insightful approach. In fact, the
version that I presented is inefficient, though it can be made efficient.
The phrase ‘without recursion’ in the title is open to debate. But it is certainly ●
not recursion in the traditional sense: a function having static calls to itself, or a
container class having instance variables of its own type (think of a BinaryTree
class containing instance variables left and right of type BinaryTree, a so-called
recursive type). There is also no loop with an explicit stack. But in my Java code,
you could argue, the class GeneralContradictionStrategy uses an instance
variable referring to another strategy and this is like a recursively defined singly-
linked list type. Dynamically it is configured as an ‘infinite’ list with itself as tail.
However, we have shown in Section 4, that you could achieve the same without
instance variables and just with parameters.

See (Verhoeff, 2018, §6) for more examples of ‘recursion’ without recursively
defined functions, using self application instead and without using instance variables.
See Verhoeff (2010) for a programming challenge (with interactive hints, using Tom’s
JavaScript Machine) that involves self referencing.

Acknowledgment

I would like to thank my colleagues Kees Huizing and Loek Cleophas for helping me
improve this article.

References

Dijkstra, E.W. (March 1968). Go To Statement Considered Harmful. Comm. ACM, 11(3), 147–148.
Dijkstra, E.W. (1989). Quoted by Bob Crawford. TUG lines, Journal of the Turbo User Group, 32, Aug.–Sep.
Verhoeff, T. (2010). An enticing environment for programming. Olympiads in Informatics, 4, 134–141.

T. Verhoeff132

Verhoeff, T. (2012–2016). From Callbacks to Design Patterns (Version 1.7). Software Engineering & Technol-
ogy, Eindhoven University of Technology, Netherlands. DOI:
https://doi.org/10.13140/RG.2.2.28836.40320

Verhoeff, T. (2018). A Master Class on Recursion. In: Adventures Between Lower Bounds and Higher Altitudes.
Lecture Notes in Computer Science, Vol.11011. Springer, pp. 610–633. DOI:
https://doi.org/10.1007/978-3-319-98355-4_35

Verhoeff, T. (2021). Git repository with Java source code for “Look Ma, Backtracking without Recursion”.
https://gitlab.tue.nl/t-verhoeff-software/code-for-backtracking-without-recursion

(Accessed 26 May 2021).

T. Verhoeff is Assistant Professor in Computer Science at Eindhoven
University of Technology, where he works in the group Software En-
gineering & Technology. His research interests are support tools for
verified software development and model driven engineering. He re-
ceived the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining a web
archive of IOI-related material and facilities for communication in the
IOI community, and in establishing, developing, chairing, and contrib-
uting to the IOI Scientific Committee from 1999 until 2007.

