
Olympiads in Informatics, 2022, Vol. 16, 89–106
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.08

89

Detecting Plagiarism as Out-of-distribution
Samples for Large-scale Programming Contests

Runfan WU, Aohui LV, Qiyang ZHAO

SKLSDE and SCSE, Beihang University
e-mail: {alralr, luaohui, zhaoqy}@buaa.edu.cn

Abstract. In competitive programming, standard solutions for easy tasks are usually simple and
shorter, making submissions more convergent both in idea and texts. The huge difference in
submission diversity between easy and hard tasks, brings inescapable challenges to plagiarism
judging by means of similarity thresholding. In this paper, by drawing the strong data support
from the China National Olympiads in Informat ics (NOI), we study the statistical characteristics
of submission similarities for tasks of wide range of difficulty degrees. Finally, we propose a new
adaptive method to de tect submission plagiarism as out-of-distribution samples, together with a
large-scale challenge dataset of competitive programming submission plagiarism detection. Our
method is shown to be of higher accuracy and robustness, thus feasible and reliable for large-
scale competitive programming contests.

Keywords: competitive programming, plagiarism detection, out-of-distribution.

1. Introduction

Programming contests are competitive programming design events, where contestants
need to finish source codes fulfilling various resource consumption restrictions, and are
expected to make submissions correct with their best effort (Halim et al., 2013). Be-
cause of the advantages of objectivity, straightforwardness and relative unbiasedness,
programming contests are widely adopted for qualifications and assessments related to
computer algorithms.

Cheating is a troublesome issue in competitive contests, including directly pla-
giarizing the source codes or copying ideas from other contestants. Usually, cheaters
are lack of thorough understanding of the plagiarized codes or ideas, making their
submissions full of segments which are almost identical to original ones. Therefore,
plagiarism detection is a reliable approach to revealing source code cheating. Auto-
matic tools, mainly specifically-designed softwares, are usually adopted in plagiarism
detection.

R. Wu, A. Lv, Q. Zhao90

The present situation regarding plagiarism calls for a more accurate, robust, and
adaptive plagiarism detection system. Many teachers against source code plagiarism
find themselves overwhelmed by the recent surge of the admission counts of computer-
related majors, which they barely manage with overreliance on automated plagiarism
detection tools (Roberts et al., 2018). For easier tasks with short and less diverse stan-
dard solu tions, contestants are more inclined to finish similar submissions of identical al-
gorithms and data structures. Most submissions would be highly similar to each other for
these tasks, whereas the situations for hard tasks are totally different. This brings a great
challenge to traditional plagiarism detection methods based on similarity thresholding
(Freire et al., 2007). Furthermore, the open-sourcing of common plagiarism detection
tools1 enables cheaters to crack and evade plagiarism detection.

Cheating codes are usually like stitched monsters -swallowed ideas, code segments
migrated from others, exhibiting exceptionally high similarity with original submissions
which are plagiarized. Therefore, source code plagiarism detection can be regarded as
recognizing out-of-distribution samples, which aligns with the objective of outlier detec-
tion (Ruff et al., 2021). We propose to answer current setbacks in plagiarism detection
by taking similarity distributions of submissions into account. The main contributions
of our research are:

We propose a robust, accurate, and adaptive source code plagiarism detection ●
method with sufficient accuracy.
We build a highly automatic plagiarism detection platform for porting related al- ●
gorithms, supporting batch manual inspection of suspicious code pairs under a
predetermined plagiarism filtering ratio.
We employ a plagiarism detection dataset based on real-world, large-scale data ●
from the Certified Software Professional (CSP) programming contest2 and includ-
ing a variety of problem designs and contestant code styles.
We verify the performance of our method with the OI dataset and discover that our ●
method outperforms conventional plagiarism detection methods.

The structure of this paper is as follows. Section 1 provides an introduction. Sec-
tion 2 describes the background of this paper and the related works. Section 3 discusses
the details and implementation of our method. Section 4 presents the experimental find-
ings. Section 5 concludes this paper and offers outlooks.

2. Backgrounds

In a programming contest, tasks are usually designed to be of various difficulty degrees
and distinct skill coverages, thus to examine contestants comprehensively. On the other
hand, contestants might be much different in problem-solving ways and capabilities,

1 Refer to Table 2.1 for details.
2 The CSP programming contest, part of the qualification process for the NOI, is regarded as part of the

Olympiad in Informatics (OI)in China. An overview of the CSP submission dataset is in Table 4.1.

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 91

and have distinct coding styles. It makes the distributions of similarities between pairs
of submissions varying dramatically across tasks and contestant groups. It is extremely
hard to designate a global threshold for all situations in conventional plagiarism detec-
tion methods. Implementing an adaptive plagiarism detection method could potentially
alleviate the issue of varying distribution, thus significantly increase the reliability and
efficiency of plagiarism detection.

With the trends of open-sourcing, most existing plagiarism detection tools have ei-
ther released the original source, or been re-implemented by third parties. Table 2.1
summa rizes the situation. Since those plagiarism detection tools are easy to access,
cheaters are able to develop cheating skills in a trial-and-error mode to evade plagiarism
detec tion. On the contra try, when detecting plagiarism as out-of-distribution samples, it
is dependent on all submissions which are untouchable for cheaters during contests, thus
cheaters cannot crack the detection scheme easily as before.

There are mainly two streams of plagiarism detection methods: intrinsic detection
and extrinsic detection (Foltỳnek et al., 2019).

2.1. Intrinsic Plagiarism Detection

Intrinsic detection links source codes with their authorships, capturing the lack of
stylistic distinction stemming from plagiarism. There are two approaches to intrin-
sic detection with an identical final step (Bandara and Wijayarathna, 2011). One is to
straightforwardly decide the author of every source code by the maximum likelihood
principle. The other is to partition the approximated distribution of source code fea-
tures. The common final step is to search for the unmatchedness of the predicted and
claimed authorships.

Intrinsic detection has a solid foundation on probability theory and decent inter-
pretability. However, it is not practical in programming contests, where an extreme num-
ber of contestants each submit few source codes. The first is prone to the confusion of
authors, while the second requires an impractical granularity of partition.

Table 2.1
Source code availability of common plagiarism detection systems

System Implementation Source code URL

MOSS (Schleimer et al., 2003) Third-Party https://github.com/agranya99/MOSS-
winnowing-seqMatcher

SIM (Gitchell and Tran, 1999) Official https://dickgrune.com/Programs/
similarity tester/

YAP (Wise, 1996) Third-Party https://github.com/zymk9/YAPDS

JPlag (Prechelt et al., 2000) Official https://github.com/jplag/jplag

R. Wu, A. Lv, Q. Zhao92

2.2. Extrinsic Plagiarism Detection

Extrinsic detection mainly focuses the relation between one source code or source code
pair to the others, instead of the relation between source codes and their authorships. It
is more frequently used in programming contests. Different types of extrinsic detection
can be characterized by the feature extraction method.
Text comparison-based methods. The main aim is to detect repeating character se-
quences or any of the derived features, which is complexified text comparison. A rela-
tively representative method is local finger printing algorithms (LFA), which are em-
ployed by MOSS and JPlag (Schleimer et al., 2003; Prechelt et al., 2000). Typically
an LFA extracts the positionally independent features of every window in the original
strings, which partly provides robustness against code fragment repositioning. These
methods make a hasty assumption that all edits do not change local features radically,
but it is not always true across all scenarios.
Classification-Based methods. Given a source code pair, the state of plagiarism could
be codified as two classes. Adding intermediate classes tends to ease the clas sification
of borderline samples. Viewing source codes as character sequences, Arwin and Tahag-
hoghi (2006) propose using general classifiers for the problem after extracting source
code features with a recurrent neural network (RNN). These methods oversimplify
group wise relations into pairwise labels, thus are unable to deal with group plagiarisms
without modifications.
Outlier detection-based methods. Outlier detection is the process of determining
samples distant from its distribution. Such methods assume in-distribution source code
pairs as innocent and out-of-distribution ones as suspicious and necessary for further
investigation. There are five general steps of source code plagiarism detection based
on outlier detection (Foltỳnek et al., 2019). Fig. 2.1 illustrates the definition of out-of-
distribution samples3. This type of methods are outlined as follows.

2.2.1. Outline of Outlier Detection-Based Methods
Data preprocessing. Preprocessing is likely needed before the main steps to remove
the portions of source codes that is relatively irrelevant to plagiarism detection. Ka-
malim and Chivers (2020) acknowledge the need of tokenization for reducing factors
not determinative of semantics. Wise (1996) proposes lowercasing all tokens relatively
early. Ðurić and Gašević (2013) regards high frequency tokens removable, for they
barely contribute to source code distinguishability despite providing syntactic confor-
mance.
Feature extraction. There are two major basic ideas for feature extraction. One is to
calculate the distance of the feature vectors for every source code. Yasaswi et al. (2017)
uses RNN, viewing source codes as character sequences. Freire et al. (2007) consider

3 The blue and red points indicates respectively the ordinary samples and outliers, and the circles denote
group boundaries.

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 93

source codes as token streams, extracting the frequencies of each token type as the
features. The intermediate representation (IR) (Rabbani and Karnalim, 2017) or the
generated machine code (Arwin and Tahaghoghi, 2006) of the source codes could also
be treated as regular ones.

The other is to calculate a similarity metric for each source code pair after extracting
pairwise features. Freire et al. suggest to measure the growth rate of the informational
entropy when the two source codes in question are concatenated (Freire et al., 2007). In
the perspective of string editing, local repetitive substrings (Karp and Rabin, 1987) and
local positional independent features (Prechelt et al., 2000; Schleimer et al., 2003) can
also derive the pairwise similarity metric.
Distribution approximation. A similarity matrix could be constructed by the sim-
ilarity values of each source code pair. Considering each column of the similarity ma-
trix as feature vectors, we can detect the outliers by the approximation of the feature
distri bution, using support vector machines (SVM) (Suthaharan, 2016) or sparse auto
encoders (Ng et al., 2011).

The similarity matrix can also be regarded as an adjacency matrix of a graph, on
which an implicit distribution approximation might be performed using graph algo-
rithms to find abnormal nodes or edges. For example, graph embedding is able to trans-
form graph nodes into their vector representations. Frequently used graph embedding
algo rithms include multidimensional scaling (MDS) (Cox and Cox, 2008), Node2Vec
(Grover and Leskovec, 2016), structural deep network embedding (SDNE) (Wang
et al., 2016), etc. Fig. 2.2 depicts feature extraction and distribution approximation in
conjunction.
Suspicious code pair filtering. For the convenient and easily interpretable quan-
tification of the possibility of plagiarism, many existing methods employ a single suspi-
ciousness index for each source code pair (Devore-McDonald and Berger, 2020; Freire
et al., 2007; Ajmal et al., 2013; Yasaswi et al., 2017; Sulistiani and Karnalim, 2019;

Fig. 2.1. Illustration of out-of-distribution samples and sample groups.

R. Wu, A. Lv, Q. Zhao94

Jiffriya et al., 2014). With the aid of the suspicious index, human operators are able
to filter the most relevant pairs for manual inspection (Devore-McDonald and Berger,
2020; Freire et al., 2007). The suspiciousness indices are typically computed from the
feature vectors of the individual source codes using vector similarity functions, such as
the Euclidean distance (Ajmal et al., 2013; Yasaswi et al., 2017) and cosine similarity
(Rahutomo et al., 2012; Sulistiani and Karnalim, 2019; Jiffriya et al., 2014).
Checking and evaluation. Manual inspection results are generally regarded as the
reference for determining the status of plagiarism. The commonly used method is to
inspect the source code pairs whose ranks of the suspiciousness index are within a pre-
viously chosen ratio, then calculate the precision, recall, and F1 score using both the
predictions and the manual inspection results (Yasaswi et al., 2017; Flores et al., 2014;
Lee et al., 2012).

3. Our Method

3.1. Data Cleaning

Data cleaning is the removal of the factors with little relevancy to plagiarism from the
submissions. In our method, there are four data cleaning steps executed in succession.
Deletion of irregular submissions. Irregular submissions are those with excessive line
count or line width, which typically contains a nonsensical paragraph repeated verba-
tim innumerably. Fig. 3.1 exhibits an example. The efficiency of plagiarism detection
system will be critically impared unless those submissions are removed.
Deletion of submissions with insufficient line counts. Typically those submissions
is either a framework or a program that could handle only the cases dispensed with

Similarity matrix

Adjacency matrix

Feature vectors

Similarity distribution

Outlying code pairs

Viewing as

Graph algorithms

Similarity calculation

Distribution approximation

Outlier detection

Figure 2.2: Feature extraction and distribution approximation

graph nodes into their vector representations. Frequently used graph embedding algo-
rithms include multidimensional scaling (MDS) (Cox & Cox, 2008), Node2Vec (Grover
& Leskovec, 2016), structural deep network embedding (SDNE) (Wang et al., 2016), etc.
Figure 2.2 depicts feature extraction and distribution approximation in conjunction.

Suspicious code pair filtering. For the convenient and easily interpretable quan-
tification of the possibility of plagiarism, many existing methods employ a single suspi-
ciousness index for each source code pair (Devore-McDonald & Berger, 2020; Freire et
al., 2007; Ajmal et al., 2013; Yasaswi et al., 2017; Sulistiani & Karnalim, 2019; Jiffriya
et al., 2014). With the aid of the suspicious index, human operators are able to filter
the most relevant pairs for manual inspection (Devore-McDonald & Berger, 2020; Freire
et al., 2007). The suspiciousness indices are typically computed from the feature vectors
of the individual source codes using vector similarity functions, such as the Euclidean
distance (Ajmal et al., 2013; Yasaswi et al., 2017) and cosine similarity (Rahutomo et
al., 2012; Sulistiani & Karnalim, 2019; Jiffriya et al., 2014).

Checking and evaluation. Manual inspection results are generally regarded as the
reference for determining the status of plagiarism. The commonly used method is to
inspect the source code pairs whose ranks of the suspiciousness index are within a pre-
viously chosen ratio, then calculate the precision, recall, and F1 score using both the
predictions and the manual inspection results (Yasaswi et al., 2017; Flores et al., 2014;
Lee et al., 2012).

6

 Fig. 2.2. Feature extraction and distribution approximation.

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 95

the original program description, indicating that the contestant was unable to dis-
cover a valid idea. The submissions of both types are extremely inadequate, render-
ing plagiarism detection on them unnecessary. We also include empty submissions
in this step.
Tokenization. Tokenization is to transform the source code from its string form to the
token stream form according to the programming language syntax, removing the influ-
ences of the factors less relevant to plagiarism. The token stream is the input of the next
step, with additional properties preserved, such as the type and function names. Fig. 3.2
illustrates the current tokenization process.

3.2. Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Fig. 3.3.
An optimization of this algorithm is to precalculate the rolling hashes (Karp and Rabin,
1987) of every window of length  on both strings.

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input of the
next step, with additional properties preserved, such as the type and function names.
Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality
reduction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrixD, which is derived from the unknown feature matrix
X. If we regard D as a weighted adjacency matrix, X can be viewed as the embedding
of the corresponding graph, effectively converting it to a graph embedding algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vectors

are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def=
�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

Fig. 3.2. Illustration of tokenization.

1
2
3

. . .
49
50
51
. . .

10000
10001
10002
10003

#include <stdio.h>

int main(int argc, char **argv) {
 /* parts related to problem solving */

 printf(“hello␣world\n”);
 printf(“hello␣world\n”);
 /* repetitive content */
 printf(“hello␣world\n”);

 return 0;
}

 Fig. 3.1. An example of irregular submissions.

R. Wu, A. Lv, Q. Zhao96

Algorithm 1: The GST algorithm

Input: Strings a = a1a2 · · · am, b = b1b2 · · · bn, minimal length of valid common
substrings M

Output: Similarity s
tiles, a, b ← {}, 00 · · · 0  

×m

, 00 · · · 0  
×n

;

do
maxmatch,matches ← M, {};
for 1 ≤ i ≤ m do

if ai = 0 then
continue;

end
for 1 ≤ j ≤ n do

if aj = 0 then

continue;
end
k ← 0;
while ai+k = bj+k and ai+k = bj+k = 0 do

k ← k + 1;
end
if k = maxmatch then

matches ← matches ∪ {(i, j, k)};
end
else if k > maxmatch then

maxmatch,matches ← k,matches ∪ {(i, j, k)};
end

end

end
for (i, j, k) ∈ matches do

for 0 ≤ k ≤ maxmatch− 1 do
ai+k, b


j+k ← 1, 1;

end

end
tiles ← tiles ∪matches;

while maxmatch > M ;
s ← 0;
for tile ∈ tiles do

s ← s+ |tile|;
end
s ← 2s

m+n ;

return s;

Figure 3.3: Algorithmic steps for the GST algorithm

9

Fig. 3.3. Algorithmic steps for the GST algorithm.

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 97

3.3. Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.
Multidimensional scaling (MDS). MDS (Cox and Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 from the
symmetric pairwise distance matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

, which is derived from the unknown feature
matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

. If we regard

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 as a weighted adjacency matrix,

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 can be viewed as the em-
bedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.

Suppose the dimensionalities of the original and dimensionally reduced feature vec-
tors are  and  (1 ≤  < ) respectively. We denote

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 and

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 as:

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 (3.1)

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

The exact steps of metric MDS are below.
We define

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 . Consider the  ×  centering matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 (3.2)

For any  ×  matrix For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

, it is easy to prove that being left or right multiplied by
For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:




argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is
equivalent to subtracting from each row or column of For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 its average respectively. We
define the  ×  matrix

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 (3.3)

Where

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:




argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

:

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:




argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 (3.4)

According to (3.3), (3.4) and the centering property and symmetry of
For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:




argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

, we define

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

(3.5)

It is apparent that

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is an inner product matrix. Note that

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is thus positive semidef-
inite. Therefore, we could obtain another form of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 by singular value decomposition
(SVD) and then the closed form of

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

:

R. Wu, A. Lv, Q. Zhao98

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 (3.6)

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

Where

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is a  ×  orthogonal matrix,

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is a diagonal matrix containing all singular
values of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

, and

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is the elementwise square root of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

. The ultimate goal of MDS is
to reduce the dimensionality of the feature vectors from  to  while maximally pre-
serving the pairwise distances, which could be represented as the following optimization
problem:

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

(3.7)

Where

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 is

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 (3.8)

Where

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is the first  rows of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 and

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is a  ×  diagonal matrix formed by the
largest  diagonal elements of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.

Generally the distance calculation on the solution is Euclidean and the distance matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 is still nonnegative, symmetric, and has zeroes as its diagonal elements.
AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.

Given a simple graph of  nodes whose adjacency matrix is For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

. The node are num-
bered from 1 to . The edge weights are in the interval [0,1]. The maximal step count
is . We intend to embed the nodes into an -dimensional vector space and  is even.
The embedding is denoted as


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 where


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 and


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 are  ×


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 and


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 × 
matrices respectively. We define the reconstructed adjacency matrix


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

.
An initial configuration S is provided as an  ×  diagonal matrix, where each di-

agonal value is the number of random walks starting from the correspondingly num-

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 99

bered node. As an algorithm based on random walks, we attempt to discover the expecta-
tion matrix E where  equals to the expected count of the random walks from node 
to node . Considering a single step from node ,


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row nor-
malization For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is converted to a transition matrix T covering one random walk step. Using
the Markov property, we know

�
Tk

�
 (1 ≤  ≤ ) is the probability of a certain walk

being a -step one from node  to node .
We define the probability vector


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

, where  represents the
probability of a certain walk to have  steps. According to Bayes theorem, the closed
form of the probability matrix P where  is the probability of a certain walk being
from node  to node  is:


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

(3.11)

Then it is easy to deduce the closed form of E with (3.11):


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

(3.12)

The loss function is similar to cross-entropy loss, respectively treating E and I
[For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 = 0] similarly to the positive and negative labels ina binary classification problem.
The final optimization problem is

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 (3.13)

Where the probability vector

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 in (3.12) needed for the closed form of E is calcu-
lated by the parameter

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 using the softmax function.

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and ◦ represent the sigmoid
activation function and the elementwise product respectively. I [·] is the Iverson nota-
tion applied elementwise, yielding 1 when the condition in the given position holds
and 0 otherwise.

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 denotes the 1-norm of a matrix, i.e. the mean of the absolute
values of all elements.

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 control the regularization strengths of

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 respec-
tively.

According to (3.12) and (3.13), the closed and differentiable form of the loss func-
tion exists. Asa result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

R. Wu, A. Lv, Q. Zhao100

3.4. Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise simi-
larity values of the feature vectors obtained in the previous step. Given two feature
vectors

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

, their Euclidean
distance is

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

(3.14)

While their cosine similarity is

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

(3.15)

Where

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 denotes the angle ≤

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 between

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

. Then we filter the source
code pairs for the suspicious ones within a certain rank of similarity for manual inspec-
tion.

In practical settings, among the suspicious ones, the pairwise string similarity values
obtained in the feature extraction step could be another metric to further filter out the
source code pairs unnecessary for manual inspection. We can consider within the suspi-
cious ones that also have a string similarity value above a certain low threshold, because
actual plagiarizing source code pairs are hardly free of textual similarity.

3.5. Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing source
code pairs are generally very rare in a submission group if they do exist, and the groups
with plagiarizing pairs also tends to be uncommon. The suspiciousness indices are not
portable across different methods, rendering the plagiarism state of a pair binary. De-
termining plagiarism needs manual inspection besides automatic filtering, while it is
difficult to ingrain domain knowledge into computers.

The evaluation metric intends to compare the consistency between manual inspec-
tion results and the current ones. Therefore, it should consider the plagiarizing pairs
alone as they have far more significance and treat them as equal. It is also supposed to be
based on the normalized ranks of the suspiciousness indices for a general performance
comparison across groups. Ideally it might favor greatly the smaller ranks and penalizes
the larger ranks less severely, because smaller ranks indicate larger consistency with
manual results and generally larger ranks could greatly fluctuate.

Based on the above criteria, we propose an evaluation metric named geometric mean
of normalized ranks (GMNR), which satisfies the above mentioned properties:

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 101

binary. Determining plagiarism needs manual inspection besides automatic filtering,
while it is difficult to ingrain domain knowledge into computers.
The evaluation metric intends to compare the consistency between manual inspec-

tion results and the current ones. Therefore, it should consider the plagiarizing pairs
alone as they have far more significance and treat them as equal. It is also supposed
to be based on the normalized ranks of the suspiciousness indices for a general perfor-
mance comparison across groups. Ideally it might favor greatly the smaller ranks and
penalizes the larger ranks less severely, because smaller ranks indicate larger consis-
tency with manual results and generally larger ranks could greatly fluctuate.
Based on the above criteria, we propose an evaluation metric named geometric mean

of normalized ranks (GMNR), which satisfies the abovementioned properties:

GMNR
def
= n


n

i=1

ri
N

(3.16)

Where N and n are the total and suspicious pair count in a particular group re-
spectively. We consider only the pairs formed by two different source codes that are
not removed after data cleaning, and treat the elements of the pairs as exchangeable.
ri (1 ≤ i ≤ n) are the 1-based ranks of the suspiciousness indices of each plagiarizing
pair. It is apparent that a value of GMNR is on (0, 1] and a smaller GMNR indicates
greater overall consistency with manual results.

4 Experiments

4.1 Environment

All experiments are conducted on a computer with 32 GB of RAM. The Python
version is 3.9.9. We employ a GTX 2080 Ti for the training and evaluation of the
models.

4.2 Dataset

Property Junior group Senior group

Problems included
candy, fruit, airport, bracket,
network, sort palin, traffic

Number of contestants 15073 10644
Number of submissions 52147 35582

Programming language allowed C, C++
Total file size 39.2 MB 44.2 MB

Table 4.1: Overview of the CSP submission dataset

13

(3.16)

Where  and  are the total and suspicious pair count in a particular group re-
spectively. We consider only the pairs formed by two different source codes that are
not removed after data cleaning, and treat the elements of the pairs as exchangeable.
 (1 ≤  ≤ ) are the 1-based ranks of the suspiciousness indices of each plagiarizing
pair. It is apparent that a value of GMNR is on (0, 1] and a smaller GMNR indicates
greater overall consistency with manual results.

4. Experiments

4.1. Environment

All experiments are conducted on a computer with 32 GB of RAM. The Python version
is 3.9.9. We employ a GTX 2080 Ti for the training and evaluation of the models.

4.2. Dataset

We test our method on submissions for the second round of the Certified Software
Professional programming contest in 2021. The contest is organized by the China Com-
puter Federation (CCF) and has junior and senior groups that assess programming skills
of middle and high school students respectively. It is a onsite contest hold distributedly
in provinces. There are two rounds typically in early Octobers and early Novembers,
and only contestants passing the first round can participate in the second.

The CSP submission dataset consists of submissions from 25 participating provinces
in the second round of CSP 2021. Table 4.1 provides an overview of the dataset. Every
participant may submit multiple times for each problem, and only the last submission is

Table 4.1
Overview of the CSP submission dataset

Property Junior group Senior group

Problems included candy, fruit,
network, sort

airport, bracket,
palin, traffic

Number of contestants 15073 10644
Number of submissions 52147 35582
Programming language allowed C, C++ C, C++
Total file size 39.2 MB 44.2 MB

R. Wu, A. Lv, Q. Zhao102

rated afterwards and given scores. All types of sensitive information involving personal
privacy, such as contestant names and schools, are removed.

We use the method described in Section 3, and conduct experiments with both MDS
and AttentionWalk as the graph embedding algorithm. We view all submissions from
each province and each task as a submission group, for plagiarism across provinces is
practically impossible. For every group, we calculate the minimal GMNR during train-
ing only if manual inspection had found any plagiarizing source code pairs, as we intend
to compare the results of our method with manual inspection results.

The training parameters for the graph embedding algorithms are in Table 4.2. For
AttentionWalk, we use the Adam optimizer. We also apply L2 regularization on the ad-
jacency matrix reconstruction


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

. The GMNR is calculated every 1000 epochs to find the
minimal one. For MDS, as the dimension of the embedding vectors cannot exceed that
of the original features, adopting an embedding dimension of the largest possible power
of 2 provides an adequate trade-off between accuracy and practicality.

4.3. Results on the CSP Submission Dataset

All results are even rounded and have four significant digits, unless otherwise noted.

4.3.1. Junior Group
Table 4.3 and Table 4.4 show the results on the junior group of the CSP submission
dataset using MDS and AttentionWalk respectively. Only provinces of plagiarizing
code pairs are shown in tables, and empty cells denote submission groups without
known plagiarizing code pairs.

From the tables, our method is robust against different difficulty and skill cover-
age combinations, and accurately identifies plagiarizing code pairs. On the submission
groups of fruit our method has an overall lower performance, possibly due to the
ability of several ready-made approaches to this problem to obtain a nearly full score,
which rarely happens to other problems.

Table 4.2
Parameters of the graph embedding algorithms

Algorithm Parameter Value

AttentionWalk Embedding dimension
Training epochs
Attention vector length
Walk count
L2 regularization strength
Learning rate
GMNR calculation interval

 512
50000
 20
 80
 0.01
 5e-5
 1000

MDS Dimension of new vector space Largest power of 2
≤ group count

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 103

4.3.2. Senior Group
The results of our algorithm are in Table 4.5 and Table 4.6, with MDS and Attention-
Walk respectively. Only provinces of plagiarizing code pairs are shown in tables. Emp-
ty cells mean no plagiarism detected in these groups, the same as in Section 4.3.1.

Our method also performs accurately with robustness across all submission groups.

Table 4.3
GMNRs using MDS on the junior group, CSP 2021

Province candy fruit network sort

Anhui 5.581e-2 3.822e-1 2.378e-1 3.334e-1
Beijing 1.162e-1 2.537e-2 2.978e-2
Guangdong 3.070e-1
Guangxi 2.167e-1 3.453e-1 2.345e-2
Hunan 3.496e-1
Jiangsu 2.366e-1
Sichuan 1.515e-1
Shandong 3.265e-3 3.190e-1 2.737e-1
Shanghai 1.624e-1
Shannxi 4.081e-2
Shanxi 1.589e-1 1.046e-2
Tianjin 3.676e-1 1.975e-1 2.412e-1
Xinjiang 3.928e-1
Yunnan 4.452e-1
Zhejiang 3.128e-1

Table 4.4
GMNRs using AttentionWalk on the junior group, CSP 2021

Province candy fruit network sort

Anhui 4.733e-7 5.960e-4 2.394e-4 1.571e-5
Beijing 3.145e-5 7.556e-4 2.011e-5
Guangdong 6.687e-5
Guangxi 6.656e-6 1.308e-5 1.253e-4
Hunan 1.629e-6
Jiangsu 3.040e-6
Sichuan 8.215e-5
Shandong 6.488e-7 1.387e-4 1.355e-5
Shanghai 5.348e-5
Shannxi 3.564e-5
Shanxi 1.919e-5 1.702e-4
Tianjin 7.652e-5 6.724e-4 8.290e-4
Xinjiang 1.057e-3
Yunnan 8.340e-5
Zhejiang 6.567e-6

R. Wu, A. Lv, Q. Zhao104

4.4. Results against Mossad

We test our method against the Mossad approach4 to plagiarism detection evasion (Dev-
ore-McDonald and Berger, 2020). After applying our method, the rank of the pair of the
original and the mutation are consistently below 10 in the 5 groups tested. To the best of
our knowledge, our method is the first practical countermeasure against Mossad.

5. Conclusions

We propose an adaptive source code detection method offering robustness and accu racy
comparable to conventional methods. We eliminate thresholds in the core parts of our
method, easing manual inspection while enhancing adaptability. Real-World tests on
the OI dataset indicate the its practicality when faced with the challenges of the var ied
submission groups and similarity distributions. Almost all known plagiarizing code pairs

4 Mossad mutates the original submission by inserting repetitive statements and uses gcc -O3 to deter-
mine the semantic equivalence. We insert pre-existing lines instead, as C++ parsing is complex, and
choose the first generated mutation with a similarity value by the GST algorithm below 0.4.

Table 4.5
GMNRs using MDS on the senior group, CSP 2021

Province airport bracket palin traffic

Chongqing 4.794e-1
Hubei 1.132e-1
Jiangsu 5.286e-1
Jiangxi 1.521e-1
Sichuan 2.934e-1
Tianjin 6.330e-2
Zhejiang 4.120e-1 3.298e-1 4.333e-1

Table 4.6
GMNRs using AttentionWalk on the senior group, CSP 2021

Province airport bracket palin traffic

Chongqing 5.018e-5
Hubei 4.808e-4
Jiangsu 8.037e-4
Jiangxi 1.277e-4
Sichuan 1.508e-5
Tianjin 4.267e-4
Zhejiang 4.349e-6 2.858e-6 3.993e-3

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 105

have low ranks of suspiciousness index regardless of whether they are syntactically or
semantically similar.

Plagiarism detection based on graph embedding can serve as an overlay upon tradi-
tional methods, facilitating the transition to adaptive, grey-box algorithms. However,
graph embedding lacks sufficient capture of the high-level semantics of the source codes
as well as other nuances. More advanced graph algorithms, such as graph neural net-
works (GNN) might be researched and employed to alleviate this problem.

6. Acknowledgement

This work is supported by State Key Laboratory of Software Development Environ-
ment, Beihang University under Grant No. SKLSDE-2022ZX-09.

References

Abu-El-Haija, S., Perozzi, B., Al-Rfou, R.,Alemi, A.A. (2018). Watch your step: Learning node embeddings via
graph attention. Advances in Neural Information Processing Systems, 31.

Ajmal, O., Missen, M.S., Hashmat, T., Moosa, M., Ali, T. (2013). Eplag: A two layer source code plagiarism
detection system. In: Eighth International Conference on Digital Information Management (ICDIM 2013)
(pp. 256–261).

Arwin, C., Tahaghoghi, S.M. (2006). Plagiarism detection across programming languages. In: Proceedings of
the 29th Australasian Computer Science Conference-Volume 48 (pp. 277–286).

Bandara, U., Wijayarathna, G. (2011).A machine learning based tool for source code plagiarism detection.
International Journal of Machine Learning and Computing , 1(4), 337.

Cox, M.A., Cox, T.F. (2008). Multidimensional scaling. In: Handbook of Data Visualization. Springer, pp.
315–347.

Devore-McDonald, B., Berger, E.D. (2020). Mossad: Defeating software plagiarism detection. Proceedings of
the ACM on Programming Languages, 4(OOPSLA), 1–28.

Flores, E., Rosso,P., Moreno, L., Villatoro-Tello, E. (2014). On the detection of source code re-use. In: Proceed-
ings of the Forum for Information Retrieval Evaluation (pp. 21–30).

Foltỳnek, T., Meuschke, N., Gipp, B. (2019). Academic plagiarism detection: a systematic literature review.
ACM Computing Surveys (CSUR), 52(6), 1–42.

Freire, M., Cebrían, M., Del Rosal, E. (2007). Ac: An integrated source code plagiarism detection environment.
arXiv preprint cs.IT/0703136 .

Gitchell, D., Tran, N. (1999). Sim: a utility for detecting similarity in computer programs. ACM Sigcse Bulletin,
31(1), 266–270.

Grover, A., Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discov ery and Data Mining (pp. 855–864).

Halim, S., Halim, F., Skiena, S.S., Revilla, M.A. (2013). Competitive Programming 3. Citeseer.
Jiffriya, M., Jahan, M.A., Ragel, R.G. (2014). Plagiarism detection on electronic text based assignments using

vector space model. In: 7th International Conference on Information and Automation for Sustainability (pp.
1–5).

Karnalim, O., Chivers, W. (2020). Preprocessing for source code similarity detection in introductory program-
ming. In: Koli Calling’20: Proceedings of the 20th Koli Calling International Conference on Computing
Education Research (pp. 1–10).

Karp, R. M., Rabin, M.O. (1987). Efficient randomized pattern-matching algorithms. IBM Journal of Research
and Development , 31(2), 249–260.

Lee, Y.-J., Lim, J.-S., Ji, J.-H., Cho, H.-G., Woo, G. (2012). Plagiarism detection among source codes using
adaptive methods. KSII Transactions on Internet and Information Systems (TIIS), 6(6), 1627–1648.

Ng, A., et al. (2011). Sparse autoencoder. CS294A Lecture notes , 72(2011), 1–19.

R. Wu, A. Lv, Q. Zhao106

Prechelt, L., Malpohl, G., Philippsen, M. (2000). Jplag: Finding Plagiarisms among a Set of Programs. Cite-
seer.

Rabbani, F.S., Karnalim, O. (2017). Detecting source code plagiarism on. net pro gramming languages using
low-level representation and adaptive local alignment. Journal of Information and Organizational Sciences,
(1), 105–123.

Rahutomo, F., Kitasuka, T., Aritsugi, M. (2012). Semantic cosine similarity. In: The 7th International Student
Conference on Advanced Science and Technology Icast (Vol. 4, p. 1).

Roberts, E., Camp, T., Culler, D., Isbell, C., Tims, J. (2018). Rising cs enrollments: Meeting the challenges. In:
Proceedings of the 49th ACM Technical Symposium on Computer Science Education (pp. 539–540).

Ruff, L., Kauffmann, J.R., Vandermeulen, R.A., Montavon, G., Samek, W., Kloft, M., . . . Müller, K.-R. (2021).
A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE.

Schleimer, S., Wilkerson, D. S., Aiken, A. (2003). Winnowing: local algorithms for document fingerprinting. In:
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (pp. 76–85).

Sulistiani, L., Karnalim, O. (2019). Es-plag: Efficient and sensitive source code plagiarism detection tool for
academic environment. Computer Applications in Engineering Education , 27(1), 166–182.

Suthaharan, S. (2016). Support vector machine. In: Machine learning models and algorithms for big data clas-
sification (pp. 207–235). Springer.

Ðurić, Z., Gašević, D. (2013). A source code similarity system for plagiarism detection. The Computer Journal,
56(1), 70–86.

Wang, D., Cui, P., Zhu, W. (2016). Structural deep network embedding. In: Proceedings of the 22nd ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining (pp. 1225–1234).

Wise, M.J. (1996). Yap3: Improved detection of similarities in computer program and other texts. In: Proceed-
ings of the Twenty-Seventh SIGCSE Technical Symposium on Computer Science Education (pp. 130–134).

Yasaswi, J., Kailash, S., Chilupuri, A., Purini, S., Jawahar, C. (2017). Unsupervised learning based approach
for plagiarism detection in programming assignments. In: Proceedings of the 10th Innovations in Software
Engineering Conference (pp. 117–121).

R. Wu has graduated from Beihang University with a bachelor degree
in Computer Science and Engineering, and is currently pursuing his
Master degree in Beihang. He is involved in the plagiarism detection
and technical supporting of the China National Olympiads in Informat-
ics (NOI). His current research interests include computer vision and
discrete mathematics.

A. Lv is involved in software development and techni cal supporting
of the China National Olympiads in Informatics (NOI). He graduated
from Taiyuan University of Technology with a Bachelor degree in
Mathematics, and is currently pursuing his Master degree in Beihang.

Q. Zhao is currently the vice chairman of the scientific committee of
the China National Olympiads in Informatics (NOI). He is a lecturer of
computer science in Beihang University, working on computer vision
and deep learning.

