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Abstract. In competitive programming, standard solutions for easy tasks are usually simple and 
shorter, making submissions more convergent both in idea and texts. The huge difference in 
submission diversity between easy and hard tasks, brings inescapable challenges to plagiarism 
judging by means of similarity thresholding. In this paper, by drawing the strong data support 
from the China National Olympiads in Informat ics (NOI), we study the statistical characteristics 
of submission similarities for tasks of wide range of difficulty degrees. Finally, we propose a new 
adaptive method to de tect submission plagiarism as out-of-distribution samples, together with a 
large-scale challenge dataset of competitive programming submission plagiarism detection. Our 
method is shown to be of higher accuracy and robustness, thus feasible and reliable for large-
scale competitive programming contests. 
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1. Introduction 

Programming contests are competitive programming design events, where contestants 
need to finish source codes fulfilling various resource consumption restrictions, and are 
expected to make submissions correct with their best effort (Halim et al., 2013). Be-
cause of the advantages of objectivity, straightforwardness and relative unbiasedness, 
programming contests are widely adopted for qualifications and assessments related to 
computer algorithms. 

Cheating is a troublesome issue in competitive contests, including directly pla-
giarizing the source codes or copying ideas from other contestants. Usually, cheaters 
are lack of thorough understanding of the plagiarized codes or ideas, making their 
submissions full of segments which are almost identical to original ones. Therefore, 
plagiarism detection is a reliable approach to revealing source code cheating. Auto-
matic tools, mainly specifically-designed softwares, are usually adopted in plagiarism 
detection. 
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The present situation regarding plagiarism calls for a more accurate, robust, and 
adaptive plagiarism detection system. Many teachers against source code plagiarism 
find themselves overwhelmed by the recent surge of the admission counts of computer-
related majors, which they barely manage with overreliance on automated plagiarism 
detection tools (Roberts et al., 2018). For easier tasks with short and less diverse stan-
dard solu tions, contestants are more inclined to finish similar submissions of identical al-
gorithms and data structures. Most submissions would be highly similar to each other for 
these tasks, whereas the situations for hard tasks are totally different. This brings a great 
challenge to traditional plagiarism detection methods based on similarity thresholding 
(Freire et al., 2007). Furthermore, the open-sourcing of common plagiarism detection 
tools1 enables cheaters to crack and evade plagiarism detection. 

Cheating codes are usually like stitched monsters -swallowed ideas, code segments 
migrated from others, exhibiting exceptionally high similarity with original submissions 
which are plagiarized. Therefore, source code plagiarism detection can be regarded as 
recognizing out-of-distribution samples, which aligns with the objective of outlier detec-
tion (Ruff et al., 2021). We propose to answer current setbacks in plagiarism detection 
by taking similarity distributions of submissions into account. The main contributions 
of our research are: 

We propose a robust, accurate, and adaptive source code plagiarism detection  ●
method with sufficient accuracy. 
We build a highly automatic plagiarism detection platform for porting related al- ●
gorithms, supporting batch manual inspection of suspicious code pairs under a 
predetermined plagiarism filtering ratio. 
We employ a plagiarism detection dataset based on real-world, large-scale data  ●
from the Certified Software Professional (CSP) programming contest2 and includ-
ing a variety of problem designs and contestant code styles. 
We verify the performance of our method with the OI dataset and discover that our  ●
method outperforms conventional plagiarism detection methods. 

The structure of this paper is as follows. Section 1 provides an introduction. Sec-
tion 2 describes the background of this paper and the related works. Section 3 discusses 
the details and implementation of our method. Section 4 presents the experimental find-
ings. Section 5 concludes this paper and offers outlooks. 

2. Backgrounds 

In a programming contest, tasks are usually designed to be of various difficulty degrees 
and distinct skill coverages, thus to examine contestants comprehensively. On the other 
hand, contestants might be much different in problem-solving ways and capabilities, 

1 Refer to Table 2.1 for details.
2 The CSP programming contest, part of the qualification process for the NOI, is regarded as part of the 

Olympiad in Informatics (OI)in China. An overview of the CSP submission dataset is in Table 4.1.
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and have distinct coding styles. It makes the distributions of similarities between pairs 
of submissions varying dramatically across tasks and contestant groups. It is extremely 
hard to designate a global threshold for all situations in conventional plagiarism detec-
tion methods. Implementing an adaptive plagiarism detection method could potentially 
alleviate the issue of varying distribution, thus significantly increase the reliability and 
efficiency of plagiarism detection. 

With the trends of open-sourcing, most existing plagiarism detection tools have ei-
ther released the original source, or been re-implemented by third parties. Table 2.1 
summa rizes the situation. Since those plagiarism detection tools are easy to access, 
cheaters are able to develop cheating skills in a trial-and-error mode to evade plagiarism 
detec tion. On the contra try, when detecting plagiarism as out-of-distribution samples, it 
is dependent on all submissions which are untouchable for cheaters during contests, thus 
cheaters cannot crack the detection scheme easily as before. 

There are mainly two streams of plagiarism detection methods: intrinsic detection 
and extrinsic detection (Foltỳnek et al., 2019). 

2.1. Intrinsic Plagiarism Detection 

Intrinsic detection links source codes with their authorships, capturing the lack of 
stylistic distinction stemming from plagiarism. There are two approaches to intrin-
sic detection with an identical final step (Bandara and Wijayarathna, 2011). One is to 
straightforwardly decide the author of every source code by the maximum likelihood 
principle. The other is to partition the approximated distribution of source code fea-
tures. The common final step is to search for the unmatchedness of the predicted and 
claimed authorships. 

Intrinsic detection has a solid foundation on probability theory and decent inter-
pretability. However, it is not practical in programming contests, where an extreme num-
ber of contestants each submit few source codes. The first is prone to the confusion of 
authors, while the second requires an impractical granularity of partition. 

Table 2.1
Source code availability of common plagiarism detection systems

System Implementation Source code URL 

MOSS (Schleimer et al., 2003) Third-Party https://github.com/agranya99/MOSS-
winnowing-seqMatcher 

SIM (Gitchell and Tran, 1999) Official https://dickgrune.com/Programs/
similarity tester/ 

YAP (Wise, 1996) Third-Party https://github.com/zymk9/YAPDS

JPlag (Prechelt et al., 2000) Official https://github.com/jplag/jplag  
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2.2. Extrinsic Plagiarism Detection 

Extrinsic detection mainly focuses the relation between one source code or source code 
pair to the others, instead of the relation between source codes and their authorships. It 
is more frequently used in programming contests. Different types of extrinsic detection 
can be characterized by the feature extraction method. 
Text comparison-based methods. The main aim is to detect repeating character se-
quences or any of the derived features, which is complexified text comparison. A rela-
tively representative method is local finger printing algorithms (LFA), which are em-
ployed by MOSS and JPlag (Schleimer et al., 2003; Prechelt et al., 2000). Typically 
an LFA extracts the positionally independent features of every window in the original 
strings, which partly provides robustness against code fragment repositioning. These 
methods make a hasty assumption that all edits do not change local features radically, 
but it is not always true across all scenarios. 
Classification-Based methods. Given a source code pair, the state of plagiarism could 
be codified as two classes. Adding intermediate classes tends to ease the clas sification 
of borderline samples. Viewing source codes as character sequences, Arwin and Tahag-
hoghi (2006) propose using general classifiers for the problem after extracting source 
code features with a recurrent neural network (RNN). These methods oversimplify 
group wise relations into pairwise labels, thus are unable to deal with group plagiarisms 
without modifications. 
Outlier detection-based methods. Outlier detection is the process of determining 
samples distant from its distribution. Such methods assume in-distribution source code 
pairs as innocent and out-of-distribution ones as suspicious and necessary for further 
investigation. There are five general steps of source code plagiarism detection based 
on outlier detection (Foltỳnek et al., 2019). Fig. 2.1 illustrates the definition of out-of-
distribution samples3. This type of methods are outlined as follows. 

2.2.1. Outline of Outlier Detection-Based Methods 
Data preprocessing. Preprocessing is likely needed before the main steps to remove 
the portions of source codes that is relatively irrelevant to plagiarism detection. Ka-
malim and Chivers (2020) acknowledge the need of tokenization for reducing factors 
not determinative of semantics. Wise (1996) proposes lowercasing all tokens relatively 
early. Ðurić and Gašević (2013) regards high frequency tokens removable, for they 
barely contribute to source code distinguishability despite providing syntactic confor-
mance. 
Feature extraction. There are two major basic ideas for feature extraction. One is to 
calculate the distance of the feature vectors for every source code. Yasaswi et al. (2017) 
uses RNN, viewing source codes as character sequences. Freire et al. (2007) consider 

3 The blue and red points indicates respectively the ordinary samples and outliers, and the circles denote 
group boundaries.
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source codes as token streams, extracting the frequencies of each token type as the 
features. The intermediate representation (IR) (Rabbani and Karnalim, 2017) or the 
generated machine code (Arwin and Tahaghoghi, 2006) of the source codes could also 
be treated as regular ones. 

The other is to calculate a similarity metric for each source code pair after extracting 
pairwise features. Freire et al. suggest to measure the growth rate of the informational 
entropy when the two source codes in question are concatenated (Freire et al., 2007). In 
the perspective of string editing, local repetitive substrings (Karp and Rabin, 1987) and 
local positional independent features (Prechelt et al., 2000; Schleimer et al., 2003) can 
also derive the pairwise similarity metric. 
Distribution approximation. A similarity matrix could be constructed by the sim-
ilarity values of each source code pair. Considering each column of the similarity ma-
trix as feature vectors, we can detect the outliers by the approximation of the feature 
distri bution, using support vector machines (SVM) (Suthaharan, 2016) or sparse auto 
encoders (Ng et al., 2011). 

The similarity matrix can also be regarded as an adjacency matrix of a graph, on 
which an implicit distribution approximation might be performed using graph algo-
rithms to find abnormal nodes or edges. For example, graph embedding is able to trans-
form graph nodes into their vector representations. Frequently used graph embedding 
algo rithms include multidimensional scaling (MDS) (Cox and Cox, 2008), Node2Vec 
(Grover and Leskovec, 2016), structural deep network embedding (SDNE) (Wang 
et al., 2016), etc. Fig. 2.2 depicts feature extraction and distribution approximation in 
conjunction. 
Suspicious code pair filtering. For the convenient and easily interpretable quan-
tification of the possibility of plagiarism, many existing methods employ a single suspi-
ciousness index for each source code pair (Devore-McDonald and Berger, 2020; Freire 
et al., 2007; Ajmal et al., 2013; Yasaswi et al., 2017; Sulistiani and Karnalim, 2019; 

Fig. 2.1. Illustration of out-of-distribution samples and sample groups.
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Jiffriya et al., 2014). With the aid of the suspicious index, human operators are able 
to filter the most relevant pairs for manual inspection (Devore-McDonald and Berger, 
2020; Freire et al., 2007). The suspiciousness indices are typically computed from the 
feature vectors of the individual source codes using vector similarity functions, such as 
the Euclidean distance (Ajmal et al., 2013; Yasaswi et al., 2017) and cosine similarity 
(Rahutomo et al., 2012; Sulistiani and Karnalim, 2019; Jiffriya et al., 2014). 
Checking and evaluation. Manual inspection results are generally regarded as the 
reference for determining the status of plagiarism. The commonly used method is to 
inspect the source code pairs whose ranks of the suspiciousness index are within a pre-
viously chosen ratio, then calculate the precision, recall, and F1 score using both the 
predictions and the manual inspection results (Yasaswi et al., 2017; Flores et al., 2014; 
Lee et al., 2012). 

3. Our Method

3.1. Data Cleaning

Data cleaning is the removal of the factors with little relevancy to plagiarism from the 
submissions. In our method, there are four data cleaning steps executed in succession.
Deletion of irregular submissions. Irregular submissions are those with excessive line 
count or line width, which typically contains a nonsensical paragraph repeated verba-
tim innumerably. Fig. 3.1 exhibits an example. The efficiency of plagiarism detection 
system will be critically impared unless those submissions are removed.
Deletion of submissions with insufficient line counts. Typically those submissions 
is either a framework or a program that could handle only the cases dispensed with 
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Feature vectors

Similarity distribution

Outlying code pairs
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Graph algorithms

Similarity calculation

Distribution approximation

Outlier detection

Figure 2.2: Feature extraction and distribution approximation

graph nodes into their vector representations. Frequently used graph embedding algo-
rithms include multidimensional scaling (MDS) (Cox & Cox, 2008), Node2Vec (Grover
& Leskovec, 2016), structural deep network embedding (SDNE) (Wang et al., 2016), etc.
Figure 2.2 depicts feature extraction and distribution approximation in conjunction.

Suspicious code pair filtering. For the convenient and easily interpretable quan-
tification of the possibility of plagiarism, many existing methods employ a single suspi-
ciousness index for each source code pair (Devore-McDonald & Berger, 2020; Freire et
al., 2007; Ajmal et al., 2013; Yasaswi et al., 2017; Sulistiani & Karnalim, 2019; Jiffriya
et al., 2014). With the aid of the suspicious index, human operators are able to filter
the most relevant pairs for manual inspection (Devore-McDonald & Berger, 2020; Freire
et al., 2007). The suspiciousness indices are typically computed from the feature vectors
of the individual source codes using vector similarity functions, such as the Euclidean
distance (Ajmal et al., 2013; Yasaswi et al., 2017) and cosine similarity (Rahutomo et
al., 2012; Sulistiani & Karnalim, 2019; Jiffriya et al., 2014).

Checking and evaluation. Manual inspection results are generally regarded as the
reference for determining the status of plagiarism. The commonly used method is to
inspect the source code pairs whose ranks of the suspiciousness index are within a pre-
viously chosen ratio, then calculate the precision, recall, and F1 score using both the
predictions and the manual inspection results (Yasaswi et al., 2017; Flores et al., 2014;
Lee et al., 2012).
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the original program description, indicating that the contestant was unable to dis-
cover a valid idea. The submissions of both types are extremely inadequate, render-
ing plagiarism detection on them unnecessary. We also include empty submissions 
in this step. 
Tokenization. Tokenization is to transform the source code from its string form to the 
token stream form according to the programming language syntax, removing the influ-
ences of the factors less relevant to plagiarism. The token stream is the input of the next 
step, with additional properties preserved, such as the type and function names. Fig. 3.2 
illustrates the current tokenization process. 

3.2. Feature Extraction 

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for 
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Fig. 3.3. 
An optimization of this algorithm is to precalculate the rolling hashes (Karp and Rabin, 
1987) of every window of length  on both strings. 

int space main (
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reduction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrixD, which is derived from the unknown feature matrix
X. If we regard D as a weighted adjacency matrix, X can be viewed as the embedding
of the corresponding graph, effectively converting it to a graph embedding algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vectors

are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def=
�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

Fig. 3.2. Illustration of tokenization. 

1 
2 
3 

. . . 
49 
50 
51 
. . . 

10000 
10001 
10002 
10003 

#include <stdio.h>

int main(int argc, char **argv) { 
     /* parts related to problem solving */

     printf(“hello␣world\n”); 
     printf(“hello␣world\n”); 
     /* repetitive content */ 
     printf(“hello␣world\n”); 

     return 0; 
} 

                  Fig. 3.1. An example of irregular submissions.
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Algorithm 1: The GST algorithm

Input: Strings a = a1a2 · · · am, b = b1b2 · · · bn, minimal length of valid common
substrings M

Output: Similarity s
tiles, a, b ← {}, 00 · · · 0  

×m

, 00 · · · 0  
×n

;

do
maxmatch,matches ← M, {};
for 1 ≤ i ≤ m do

if ai = 0 then
continue;

end
for 1 ≤ j ≤ n do

if aj = 0 then

continue;
end
k ← 0;
while ai+k = bj+k and ai+k = bj+k = 0 do

k ← k + 1;
end
if k = maxmatch then

matches ← matches ∪ {(i, j, k)};
end
else if k > maxmatch then

maxmatch,matches ← k,matches ∪ {(i, j, k)};
end

end

end
for (i, j, k) ∈ matches do

for 0 ≤ k ≤ maxmatch− 1 do
ai+k, b


j+k ← 1, 1;

end

end
tiles ← tiles ∪matches;

while maxmatch > M ;
s ← 0;
for tile ∈ tiles do

s ← s+ |tile|;
end
s ← 2s

m+n ;

return s;

Figure 3.3: Algorithmic steps for the GST algorithm

9
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3.3. Approximation of Distribution 

We choose graph embedding as the approach for this step, extracting a feature vector 
for every valid source code. There are two graph embedding algorithms to be used. 
Multidimensional scaling (MDS). MDS (Cox and Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix 
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influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.
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We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
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For any  ×  matrix For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:
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3.2 Feature Extraction
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Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)
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influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-
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to metric MDS, and the problem can be generally framed as the following optimization
problem:
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xi − xj2 − dij


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i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is
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influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
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embedding of the corresponding graph, effectively converting it to a graph embedding
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Random walks are Markov processes. Therefore, according to (3.10), after row nor-
malization For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:
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 = 0] similarly to the positive and negative labels ina binary classification problem. 
The final optimization problem is 

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â

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+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
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
2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
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According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and 

argmin
L,R,q


−
E ◦ log σ


Â
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An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is
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According to (3.12) and (3.13), the closed and differentiable form of the loss func-
tion exists. Asa result, the embeddings can be obtained by solving the optimization 
problem described in (3.13), typically using gradient descent-based methods. 
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of all elements. β and γ control the regularization strengths of q and Â respectively.
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exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.
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Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
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There are several challenges of evaluating the results of our method. Plagiarizing
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Â

+ I [A = 0] ◦ log


1− σ


Â
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Â

+ I [A = 0] ◦ log


1− σ


Â
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code pairs for the suspicious ones within a certain rank of similarity for manual inspec-
tion.

In practical settings, among the suspicious ones, the pairwise string similarity values 
obtained in the feature extraction step could be another metric to further filter out the 
source code pairs unnecessary for manual inspection. We can consider within the suspi-
cious ones that also have a string similarity value above a certain low threshold, because 
actual plagiarizing source code pairs are hardly free of textual similarity. 

3.5. Evaluation 

There are several challenges of evaluating the results of our method. Plagiarizing source 
code pairs are generally very rare in a submission group if they do exist, and the groups 
with plagiarizing pairs also tends to be uncommon. The suspiciousness indices are not 
portable across different methods, rendering the plagiarism state of a pair binary. De-
termining plagiarism needs manual inspection besides automatic filtering, while it is 
difficult to ingrain domain knowledge into computers. 

The evaluation metric intends to compare the consistency between manual inspec-
tion results and the current ones. Therefore, it should consider the plagiarizing pairs 
alone as they have far more significance and treat them as equal. It is also supposed to be 
based on the normalized ranks of the suspiciousness indices for a general performance 
comparison across groups. Ideally it might favor greatly the smaller ranks and penalizes 
the larger ranks less severely, because smaller ranks indicate larger consistency with 
manual results and generally larger ranks could greatly fluctuate. 

Based on the above criteria, we propose an evaluation metric named geometric mean 
of normalized ranks (GMNR), which satisfies the above mentioned properties: 
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binary. Determining plagiarism needs manual inspection besides automatic filtering,
while it is difficult to ingrain domain knowledge into computers.
The evaluation metric intends to compare the consistency between manual inspec-

tion results and the current ones. Therefore, it should consider the plagiarizing pairs
alone as they have far more significance and treat them as equal. It is also supposed
to be based on the normalized ranks of the suspiciousness indices for a general perfor-
mance comparison across groups. Ideally it might favor greatly the smaller ranks and
penalizes the larger ranks less severely, because smaller ranks indicate larger consis-
tency with manual results and generally larger ranks could greatly fluctuate.
Based on the above criteria, we propose an evaluation metric named geometric mean

of normalized ranks (GMNR), which satisfies the abovementioned properties:

GMNR
def
= n


n

i=1

ri
N

(3.16)

Where N and n are the total and suspicious pair count in a particular group re-
spectively. We consider only the pairs formed by two different source codes that are
not removed after data cleaning, and treat the elements of the pairs as exchangeable.
ri (1 ≤ i ≤ n) are the 1-based ranks of the suspiciousness indices of each plagiarizing
pair. It is apparent that a value of GMNR is on (0, 1] and a smaller GMNR indicates
greater overall consistency with manual results.

4 Experiments

4.1 Environment

All experiments are conducted on a computer with 32 GB of RAM. The Python
version is 3.9.9. We employ a GTX 2080 Ti for the training and evaluation of the
models.

4.2 Dataset

Property Junior group Senior group

Problems included
candy, fruit, airport, bracket,
network, sort palin, traffic

Number of contestants 15073 10644
Number of submissions 52147 35582

Programming language allowed C, C++
Total file size 39.2 MB 44.2 MB

Table 4.1: Overview of the CSP submission dataset
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Where  and  are the total and suspicious pair count in a particular group re-
spectively. We consider only the pairs formed by two different source codes that are 
not removed after data cleaning, and treat the elements of the pairs as exchangeable. 
  (1 ≤  ≤ ) are the 1-based ranks of the suspiciousness indices of each plagiarizing 
pair. It is apparent that a value of GMNR is on (0, 1] and a smaller GMNR indicates 
greater overall consistency with manual results. 

4. Experiments 

4.1. Environment 

All experiments are conducted on a computer with 32 GB of RAM. The Python version 
is 3.9.9. We employ a GTX 2080 Ti for the training and evaluation of the models. 

4.2. Dataset 

We test our method on submissions for the second round of the Certified Software 
Professional programming contest in 2021. The contest is organized by the China Com-
puter Federation (CCF) and has junior and senior groups that assess programming skills 
of middle and high school students respectively. It is a onsite contest hold distributedly 
in provinces. There are two rounds typically in early Octobers and early Novembers, 
and only contestants passing the first round can participate in the second. 

The CSP submission dataset consists of submissions from 25 participating provinces 
in the second round of CSP 2021. Table 4.1 provides an overview of the dataset. Every 
participant may submit multiple times for each problem, and only the last submission is 

Table 4.1
Overview of the CSP submission dataset

Property Junior group Senior group 

Problems included candy, fruit, 
network, sort

airport, bracket, 
palin, traffic

Number of contestants 15073 10644 
Number of submissions 52147 35582 
Programming language allowed C, C++ C, C++
Total file size 39.2 MB 44.2 MB 
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rated afterwards and given scores. All types of sensitive information involving personal 
privacy, such as contestant names and schools, are removed. 

We use the method described in Section 3, and conduct experiments with both MDS 
and AttentionWalk as the graph embedding algorithm. We view all submissions from 
each province and each task as a submission group, for plagiarism across provinces is 
practically impossible. For every group, we calculate the minimal GMNR during train-
ing only if manual inspection had found any plagiarizing source code pairs, as we intend 
to compare the results of our method with manual inspection results. 

The training parameters for the graph embedding algorithms are in Table 4.2. For 
AttentionWalk, we use the Adam optimizer. We also apply L2 regularization on the ad-
jacency matrix reconstruction 


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is
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. The GMNR is calculated every 1000 epochs to find the 
minimal one. For MDS, as the dimension of the embedding vectors cannot exceed that 
of the original features, adopting an embedding dimension of the largest possible power 
of 2 provides an adequate trade-off between accuracy and practicality. 

4.3. Results on the CSP Submission Dataset 

All results are even rounded and have four significant digits, unless otherwise noted. 

4.3.1. Junior Group 
Table 4.3 and Table 4.4 show the results on the junior group of the CSP submission 
dataset using MDS and AttentionWalk respectively. Only provinces of plagiarizing 
code pairs are shown in tables, and empty cells denote submission groups without 
known plagiarizing code pairs. 

From the tables, our method is robust against different difficulty and skill cover-
age combinations, and accurately identifies plagiarizing code pairs. On the submission 
groups of fruit our method has an overall lower performance, possibly due to the 
ability of several ready-made approaches to this problem to obtain a nearly full score, 
which rarely happens to other problems. 

Table 4.2
Parameters of the graph embedding algorithms

Algorithm Parameter Value 

AttentionWalk Embedding dimension 
Training epochs 
Attention vector length 
Walk count 
L2 regularization strength 
Learning rate 
GMNR calculation interval 

    512 
50000 
      20 
      80 
        0.01 
  5e-5 
  1000 

MDS Dimension of new vector space Largest power of 2 
≤ group count 
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4.3.2. Senior Group 
The results of our algorithm are in Table 4.5 and Table 4.6, with MDS and Attention-
Walk respectively. Only provinces of plagiarizing code pairs are shown in tables. Emp-
ty cells mean no plagiarism detected in these groups, the same as in Section 4.3.1. 

Our method also performs accurately with robustness across all submission groups. 

Table 4.3
GMNRs using MDS on the junior group, CSP 2021

Province candy fruit network sort 

Anhui 5.581e-2 3.822e-1 2.378e-1 3.334e-1 
Beijing 1.162e-1 2.537e-2 2.978e-2 
Guangdong 3.070e-1 
Guangxi 2.167e-1 3.453e-1 2.345e-2 
Hunan 3.496e-1 
Jiangsu 2.366e-1 
Sichuan 1.515e-1 
Shandong 3.265e-3 3.190e-1 2.737e-1 
Shanghai 1.624e-1 
Shannxi 4.081e-2 
Shanxi 1.589e-1 1.046e-2 
Tianjin 3.676e-1 1.975e-1 2.412e-1 
Xinjiang 3.928e-1 
Yunnan 4.452e-1 
Zhejiang 3.128e-1 

Table 4.4
GMNRs using AttentionWalk on the junior group, CSP 2021

Province candy fruit network sort 

Anhui 4.733e-7 5.960e-4 2.394e-4 1.571e-5 
Beijing 3.145e-5 7.556e-4 2.011e-5 
Guangdong 6.687e-5 
Guangxi 6.656e-6 1.308e-5 1.253e-4 
Hunan 1.629e-6 
Jiangsu 3.040e-6 
Sichuan 8.215e-5 
Shandong 6.488e-7 1.387e-4 1.355e-5 
Shanghai 5.348e-5 
Shannxi 3.564e-5 
Shanxi 1.919e-5 1.702e-4 
Tianjin 7.652e-5 6.724e-4 8.290e-4 
Xinjiang 1.057e-3 
Yunnan 8.340e-5 
Zhejiang 6.567e-6 
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4.4. Results against Mossad 

We test our method against the Mossad approach4 to plagiarism detection evasion (Dev-
ore-McDonald and Berger, 2020). After applying our method, the rank of the pair of the 
original and the mutation are consistently below 10 in the 5 groups tested. To the best of 
our knowledge, our method is the first practical countermeasure against Mossad. 

5. Conclusions 

We propose an adaptive source code detection method offering robustness and accu racy 
comparable to conventional methods. We eliminate thresholds in the core parts of our 
method, easing manual inspection while enhancing adaptability. Real-World tests on 
the OI dataset indicate the its practicality when faced with the challenges of the var ied 
submission groups and similarity distributions. Almost all known plagiarizing code pairs 

4 Mossad mutates the original submission by inserting repetitive statements and uses gcc -O3 to deter-
mine the semantic equivalence. We insert pre-existing lines instead, as C++ parsing is complex, and 
choose the first generated mutation with a similarity value by the GST algorithm below 0.4. 

Table 4.5
GMNRs using MDS on the senior group, CSP 2021

Province airport bracket palin traffic 

Chongqing 4.794e-1 
Hubei 1.132e-1
Jiangsu 5.286e-1
Jiangxi 1.521e-1
Sichuan 2.934e-1 
Tianjin 6.330e-2
Zhejiang 4.120e-1 3.298e-1 4.333e-1 

Table 4.6
GMNRs using AttentionWalk on the senior group, CSP 2021

Province airport bracket palin traffic 

Chongqing 5.018e-5
Hubei 4.808e-4
Jiangsu 8.037e-4
Jiangxi 1.277e-4
Sichuan 1.508e-5
Tianjin 4.267e-4
Zhejiang 4.349e-6 2.858e-6 3.993e-3 
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have low ranks of suspiciousness index regardless of whether they are syntactically or 
semantically similar. 

Plagiarism detection based on graph embedding can serve as an overlay upon tradi-
tional methods, facilitating the transition to adaptive, grey-box algorithms. However, 
graph embedding lacks sufficient capture of the high-level semantics of the source codes 
as well as other nuances. More advanced graph algorithms, such as graph neural net-
works (GNN) might be researched and employed to alleviate this problem. 
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