
The CodeCup Paper for IOI-workshop Page 1 of 7.

The CodeCup, an annual game programming competition.

Willem van der Vegt (willem@informaticaolympiade.nl) is a teachers trainer in mathematics and computer
science at Windesheim University for Professional Education in Zwolle, the Netherlands. He is also the contest
director of the Dutch Informatics Olympiad. He joined the IOI nine times.

Summary: The annual game programming competition also known as the CodeCup offers
an environment for a set of programming problems that are only partial algorithmic. After an
introduction of the competition and its history and development, I will point out some of the
interesting topics that arose in these competitions. Of course we have a list of wishes for the
future of our competition. At the end of this paper I will present some of the questions that
are still open using these kinds of programming tasks.

Introduction:

Games offer an intriguing environment for developing computer programs. Computer chess
is object of studies in computer science for a long time, and it offers a lot of methods to use
in designing games [1]. But unlike the games that were used in the past IOI’s1, in our
competition we tend to choose games that do not have a known perfect solution. This way
we encourage participants to investigate new things and to compete with their own original
ideas.

History:

The annual CodeCup-contest (www.codecup.nl) is a side event for the Dutch Informatics
Olympiad (NIO). Contestants for the CodeCup make a program for the final task of the first
round of the NIO. They have to write a program to play a game. A working program that not
makes errors in competition will score 80 out of 100 for the NIO. With little effort and limited
knowledge in advance it is often possible to make a working program, also because example
programs with working IO are offered. The main challenge is to find good algorithms to be
able to beat your opponents. Since the CodeCup started every two weeks test competitions
are organized that give you an idea of the performance of your program.

In 1996 we started our first competition with a solitaire game. We prepared a number of
random input sets, and after every round of 10 games the worst performing programs were
discarded. In 1997 we did the first two persons board game, and we started a system with
group competitions and a final group to find the winner. In 1998 we started to present the
result on the Internet (alas, they are not available any more) and since 1999 a full
competition was played [2]. Submissions were made by email or by sending a floppy. The
organization had to do a lot of testing to be able to run the tournament.

1 For instance: IOI'96 Day 1, Problem 1: A Game. In the problem description is stated: “If the board
initially contains an even number of elements, then the first player has a winning strategy. You are to
write a program that implements the strategy of the first player to win the game.”

The CodeCup Paper for IOI-workshop Page 2 of 7.

Starting in 2003, we extended this task and opened the CodeCup-contest for everyone who
was interested. On the CodeCup-website the game is presented, contestants can submit
their programs that are automatically tested and the tournament is run, preceded by a
number of test competitions.. In 2004 the competition formula changed: We play a number of
rounds in a Swiss tournament; then the best placed programs meet each other in a full
competition.

All games of the past ten years are shortly described in Appendix A.

Programming issues in these contests:

For all games programs have to be written that are able to perform these tasks:

1. Representing a game and a game history.
2. Generating all possible moves.
3. Maintaining a kind of game tree to be able to investigate future moves.
4. Evaluating game positions and selecting moves.

Representing a game and a game history.

This includes topics like:

• Developing a data structure for a game board.
• Elaborating notions like neighbourhood, adjacent cells, rows and columns.
• Realizing the proper input and output procedures.

Before the years of the CodeCup, contestants had to make programs that read a game
history and wrote a move. A game was played by starting a batch file that called each
program in turn, providing it with the proper input and analyzing the output. You had to do
your thinking all over again each move, because you had no way to save your intermediate
results.

Nowadays, the contest system starts both players programs and they are temporary stopped
where it is the turn for the other program to move. So the way to communicate slightly
changed. You are able to reuse the results of an evaluation of all positions and to do some
pre-processing at the start of the game. Alas this implied that it was not so easy to make the
competition software yourself in order to test your program. The Caia-project was started in
order to give contestants an environment to test his own players; it is described at the
CodeCup-website. This description also gives a good idea on the technical background of
our competition software.

Generating all possible moves.

In order to generate all possible moves you need to implement all the given rules. In Caissa
for instance, moves were only allowed if a connection rule was still applied. The check for
this connection rule is a classic algorithmic problem (are all available places on the game
board still connected). In Tac-Tic Turn and in Lamistra you were not allowed to take back
your last move, so keeping track of the game history is needed. In Lasca it was possible to
surrender or to offer a draw, so these possibilities should occur when generating al list of all
possible moves.

In some games it is not needed to be able to generate all possible moves to enter the
contest. In Turn Right, this years game, generating all closed paths on a game board with a

The CodeCup Paper for IOI-workshop Page 3 of 7.

given maximum number of edges is quite a heavy programming task. Less experienced
programmers can start with submitting a program that doesn’t use all of the possible moves,
in order to develop a proper working program. During the test competitions these contestants
are challenged to improve their submission by finding all the moves they first neglected.

Maintaining a kind of game tree to be able to investigate future moves.

This is of course the area of classical game theory, with stuff like minimax reasoning and
alpha-beta-pruning [1]. The number of branches in the game trees varied from 6 (for instance
in the initial game board of Dao) to 1800 (like in the initial game board in Pas), so finding a
good value for the search depth was useful in one year, but tricky in other competitions. The
winner of the Caissa-competition discovered a very deep combination where a piece was
given away in order to win the game a few moves later. He was able to apply this
combination is the match with the runner up, so it was very impressive.

Evaluating game positions and selecting moves.

The use of a good evaluation function, in order to be able to distinguish different positions in
the game, is of course important. Sometimes the rules of a game (like Pas or Turn Right)
imply that there are two levels to score points. It is very disappointing to gather a lot of points
on the secondary level, and then still to lose the game.

Two of the games we used turned out to be solved. Tac-Tic Turn could always be won by the
first player; Dao was a solid draw. Still the competitions for these games were full of
surprises. The competition for Tac-Tic Turn was won by two contestants. One of these used
a program that lost one of its games, when first to move. But its ability to defeat other
programs when not playing a perfect game helped it to survive in the tournament. In the Dao-
competition one of the contestants developed a kind of fuzzy logic system in order to be able
to beat as many week opponents as possible.

Future wishes:

We would like to have a competition with a n-persons game (with n>2), like a card game.

We once used the idea of offering a draw, of the possibility to surrender (for a slightly better
score then losing). For some games this can be a nice option again.

We like a lot more contestants from all over the world.

Discussion:

We like the way these contests offer us the possibility to present more complex tasks with
different problems within them. Scoring the results of these tasks is however not easy.

Until now, a contestant of our first round is able to gain 80 out of 100 points for submitting a
working game program. The final 20 points are available for the position that his program
reaches in the tournament.

When you look at the programming issues above, only the first and a part of the second
issue have to be realized in order to be able to score these 80 points. In a lot of competitions
there were smart contestants that were able to score these points with little effort.

The CodeCup Paper for IOI-workshop Page 4 of 7.

The check whether a program performs all right is made in two steps: In the first test the
program plays against two of the players of the organization. When an error occurs, the
program is rejected. The other part of the test is the actual tournament; for all errors
encountered points are subtracted.

Conclusions:

Games and tournaments like the CodeCup offer a great context for programming
competitions. The CodeCup-contest system offers an easy environment for presenting a
game, entering or re-entering submissions, testing programs and running a tournament.

In programming a game a lot of computer science problems need to be solved. Only when
these issues are dealt with it is possible to enter a competition.

In our competition only a small part of the score is given for the algorithms that give your
program the chance to win a tournament. Finding a good way for translating the results in the
tournament into a score for our Olympiad is not so easy.

Literature:

1. Computer chess compendium, David Levy, 1988, Springer-Verlag. New York.

2. De wedstrijden binnen de Nederlandse Informatica Olympiade, Willem van der Vegt,
in Tinfon 99/3, journal for computer science and education (Dutch).

The CodeCup Paper for IOI-workshop Page 5 of 7.

Appendix A: A history of the CodeCup and its predecessor.

Year Game Description Contestants
1996 Rack-O Played as a solitaire game: You have a rack with 10 places, they

are filled with numbered cards. In every move you pick a new card
and you have to put in your rack, discarding one of the cards you
already had. Goal is to achieve a increasing sequence of cards.

37

1997 Hexxagon

See http://hexxagon.freeonlinegames.com/

37

1998 Tac-Tic
Turn

Make 4 in a row by adding pieces to the field, or by turning one of
the 9 2x2 squares.

63

1999 PAS

Place your coloured stones so that they will fit with the others; try to
place more stones than your opponent.

51

The CodeCup Paper for IOI-workshop Page 6 of 7.

2000 Lasca

This is a checkers like game where you take the pieces you have
captured with you.

28

2001 Susan

Place your pieces in turn and try to enclose a piece of your
opponent. See: http://www.stephen.com/sue/sue.html

42

2002 DAO

This game was modified for our contest, because a lot of strategy
was revealed on the website www.playdao.com

20

2003 Caissa

This game of Christian Freeling is described at
http://www.mindsports.net/CompleteGames/Checkmate/Caissa.html

32

2004 Lamistra

This is a game where players in turn have to choose a letter and
place it in a vacant cell on their own game board. The goal is to

form more or longer valid words then the opponent.

54

The CodeCup Paper for IOI-workshop Page 7 of 7.

2005 Lamistra

Latent Mini Stratego, a game where you can postpone the decision
of the value of your pieces until you are forced to do so.

31

2006 Turn
Right

Try to make 3x3 squares, all filled with your own pieces, by placing
your pieces in a clever way and by choosing closed path to turn

them one step in the right direction.

32?

