

Test Data
Comparing Code

Competition Day One
August 18, 2003

Draft 1.2 Page 1 of 3 code

Test Data for
Comparing Code

Algorithms:

This problem can be broken into two pieces: determining if there exists a mapping that
takes a particular set of lines from the first program to a particular set of lines from the
second (call this the inner algorithm), and determining the best such range (call this the
outer algorithm). The efficiency of the outer algorithm depends on the functions provided
by the inner one.

Given two sets of lines, you can compute if there is a variable mapping taking the entire
first set to the other fairly efficiently. Each line is an equation. The corresponding
equation of an equation is the equation on the same line in the other program. For each
variable mentioned in each program, look at all the lines in which it appears in that
program. If it ever appears on the left-hand side, then the variable must be mapped to the
value on the left-hand side in the corresponding equation in the other program. If it
appears on the right-hand side twice in the some equation, it must match to the value on
the right-hand side in the corresponding equation in the other program (and the
corresponding equation must use the same variable). If a variable appears only on the
right-hand sides of equations in one program, then the corresponding right-hand sides of
all occurrences of that variable must share a common variable. Clearly, if a variable must
map to two different variables, then no mapping exists. If the variable mapping of some
variable X is known to be Y, then if any occurrence of X does not have Y in the
corresponding equation, then no mapping exists. Note that variables from both programs
must be tested.

All of these conditions are trivially necessary, but it may be less clear that they are
sufficient. If a variable X must map to another variable Y by the conditions above, then
it is checked by the conditions above to ensure that every occurrence of variable X can be
mapped to the variable Y. Note that variable X is known to map to variable Y if and only
if variable Y is known to map to variable X. If variable X can match to either variable Y
or to variable Z (Y ≠ Z), then there are several situations: the mapping for neither
variable Y nor variable Z is known, the mapping for either variable Y or variable Z is
known, or the mappings for both variable Y and variable Z are known.

Neither known: If neither mapping is known, then every time variables Y or Z appear,
they must appear on the right-hand side of an equation. Furthermore, the right-hand side
of the corresponding equation must be X and some other variable W. Thus, the variables
can map either way.

One known: If variable X can map to either Y or Z, then there is some line that causes
variable X and some variable W to possibly map to either Y or Z. Without loss of
generality, presume the mapping of Y is known. Since Y cannot map to X, it must map
to W, or the conditions would have rejected the program set. Since the mapping of

Test Data
Comparing Code

Competition Day One
August 18, 2003

Draft 1.2 Page 2 of 3 code

variable Z is not known, then it must not appear in any other places or always appear
paired with X and W. Thus, X can be mapped to Z, and vice-versa.

Both known: If variable X can map to either Y or Z, then there is some line that causes
variable X and some variable W to possibly map to either Y or Z. If the mapping of Y
and Z are known, then they must map to that variable W, which is both not legal and will
be caught by the conditions above.

For the purposes of analysis, assume, without loss of generality, R ≤ H.

Algorithm 1: For each line offset from –R to R, start at the first pair of lines that differ by
the desired offset. Attempt to add pairs of lines to the end of each subprogram. If a pair
of lines cannot be added (as determined an incremental algorithm that tests the conditions
above), delete pairs of lines from the start of the subprograms until the pair of lines can
be added or until the subprograms become empty.

This algorithm is O(R H), presuming the conditions are incrementally checked in O(1)
time. It requires a method to incrementally update the conditions both by adding lines to
the end of the subprograms of consideration and delete lines from the beginning of the
subprograms.

This algorithm is expected to receive full points.

Algorithm 2: Start at a pair of lines from each program. Attempt to add pairs of lines to
the end of each subprogram until the addition causes a conflict.

This algorithm is O(R2 H), presuming the conditions are incrementally checked in O(1)
time. It requires a method to incrementally update the conditions both by adding lines to
the end of the subprograms of consideration.

This algorithm is expected to receive about 65% of the points.

Algorithm 3: For each pair of starting locations, consider each possible program pairing
with that pair of starting location, doing binary search to find the optimal length.

This algorithm is O(R2 H log R) time, presuming the time to check the existence of a
mapping can be done in time linear to the number of lines. It does not require support for
any incremental operations.

This algorithm is expected to receive about 55% of the points.

Algorithm 4: Rather than do the O(1) mapping checker, use maximum-weighted bipartite
matching. Add an edge between every pair of variables names with weight equal to the
number of pairings satisfied by their pairing. If the maximum weight bipartite matching

Test Data
Comparing Code

Competition Day One
August 18, 2003

Draft 1.2 Page 3 of 3 code

is 3⋅k, where k is the number of lines in the subprograms of consideration, then there
exists a mapping.

The efficiency of this algorithm varies based on the outer algorithm used. This algorithm
is expected to receive about 45% of the points, although this will vary depending on
algorithm and implementation.

Algorithm 5: Attempt to construct a variable mapping by constrained search of all
possible mappings.

The efficiency of this algorithm varies dramatically based on the exact algorithm used.
In general, this class of algorithms is expected to receive about 30% of the points.

Test Data

Test # Points R H Answer
1 5 4 4 4
2 5 5 4 4
3 5 9 6 0
4 5 5 4 4
5 5 12 3 3
6 5 10 1 1
7 5 200 10 2
8 5 90 70 43
9 5 125 110 40
10 5 180 170 60
11 5 230 210 132
12 5 354 318 178
13 5 403 364 198
14 5 465 438 203
15 5 523 497 211
16 5 678 659 212
17 5 804 787 256
18 5 904 909 274
19 5 1000 1000 306
20 5 1000 1000 98

